![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using "computationally intensive controls," so the second part of this book addresses the solution of optimization problems in "real" time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as 'optimal' trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other's dynamics.
Advanced research in the field of mechatronics and robotics represents a unifying interdisciplinary and intelligent engineering science paradigm. It is a holistic, concurrent, and interdisciplinary engineering science that identifies novel possibilities of synergizing and fusing different disciplines. The Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics is a collection of innovative research on the methods and applications of knowledge in both theoretical and practical skills of intelligent robotics and mechatronics. While highlighting topics including green technology, machine learning, and virtual manufacturing, this book is ideally designed for researchers, students, engineers, and computer practitioners seeking current research on developing innovative ideas for intelligent robotics and autonomous and smart interdisciplinary mechatronic products.
Mapping and localization are two essential tasks in autonomous mobile robotics. Due to the unavoidable noise that sensors present, mapping algorithms usually rely on loop closure detection techniques, which entail the correct identification of previously seen places to reduce the uncertainty of the resulting maps. This book deals with the problem of generating topological maps of the environment using efficient appearance-based loop closure detection techniques. Since the quality of a visual loop closure detection algorithm is related to the image description method and its ability to index previously seen images, several methods for loop closure detection adopting different approaches are developed and assessed. Then, these methods are used in three novel topological mapping algorithms. The results obtained indicate that the solutions proposed attain a better performance than several state-of-the-art approaches. To conclude, given that loop closure detection is also a key component in other research areas, a multi-threaded image mosaicing algorithm is proposed. This approach makes use of one of the loop closure detection techniques previously introduced in order to find overlapping pairs between images and finally obtain seamless mosaics of different environments in a reasonable amount of time.
Flexible Multibody Dynamics comprehensively describes the numerical modelling of flexible multibody dynamics systems in space and aircraft structures, vehicles, and mechanical systems. A rigorous approach is followed to handle finite rotations in 3D, with a thorough discussion of the different alternatives for parametrization. Modelling of flexible bodies is treated following the Finite Element technique, a novel aspect in multibody systems simulation. Moreover, this book provides extensive coverage of the formulation of a general purpose software for flexible multibody dynamics analysis, based on an exhaustive treatment of large rotations and finite element modelling, and incorporating useful reference material. Features include different solution techniques such as:
These proceedings present selected research papers from CISC'18, held in Wenzhou, China. The topics include Multi-Agent Systems, Networked Control Systems, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Nonlinear and Variable Structure Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles, and so on. Engineers and researchers from academia, industry, and government can get an insight view of the solutions combining ideas from multiple disciplines in the field of intelligent systems.
This book reflects the latest developments in variable structure systems (VSS) and sliding mode control (SMC), highlighting advances in various branches of the VSS/SMC field, e.g., from conventional SMC to high-order SMC, from the continuous-time domain to the discrete-time domain, from theories to applications, etc. The book consists of three parts and 16 chapters: in the first part, new VSS/SMC algorithms are proposed and their properties are analyzed, while the second focuses on the use of VSS/SMC techniques to solve a variety of control problems; the third part examines the applications of VSS/SMC to real-time systems. The book introduces postgraduates and researchers to the state-of-the-art in VSS/SMC field, including the theory, methodology, and applications. Relative academic disciplines include Automation, Mathematics, Electrical Engineering, Mechanical Engineering, Instrument Science and Engineering, Electronic Engineering, Computer Science and Technology, Transportation Engineering, Energy and Power Engineering, etc.
Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
This is the proceedings of ARK 2018, the 16th International Symposium on Advances in Robot Kinematics, that was organized by the Group of Robotics, Automation and Biomechanics (GRAB) from the University of Bologna, Italy. ARK are international symposia of the highest level organized every two years since 1988. ARK provides a forum for researchers working in robot kinematics and stimulates new directions of research by forging links between robot kinematics and other areas.The main topics of the symposium of 2018 were: kinematic analysis of robots, robot modeling and simulation, kinematic design of robots, kinematics in robot control, theories and methods in kinematics, singularity analysis, kinematic problems in parallel robots, redundant robots, cable robots, over-constrained linkages, kinematics in biological systems, humanoid robots and humanoid subsystems.
The emergence of wireless robotic systems has provided new perspectives on technology. With the combination of several disciplines such as robotic systems, ad hoc networking, telecommunications and more, mobile ad hoc robots have been essential towards the future possibilities of technology. Mobile Ad Hoc Robots and Wireless Robotic Systems: Design and Implementation aims to introduce robotic theories, wireless technologies, and routing applications involved in the development of mobile ad hoc robots. This reference source brings together topics on the communication and control of network ad hoc robots, and how they working together to carry out coordinated functions.
The research book is a continuation of the authors' previous works, which are focused on recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The book gathers selected contributions addressing a number of real-life applications including the identification of handwritten texts, watermarking techniques, simultaneous localization and mapping for mobile robots, motion control systems for mobile robots, analysis of indoor human activity, facial image quality assessment, android device controlling, processing medical images, clinical decision-making and foot progression angle detection. Given the tremendous interest among researchers in the development and applications of computer vision paradigms in the field of business, engineering, medicine, security and aviation, the book offers a timely guide for all PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
This monograph presents new theories and methods for fixed-time cooperative control of multi-agent systems. Fundamental concepts of fixed-time stability and stabilization are introduced with insightful understanding. This book presents solutions for several problems of fixed-time cooperative control using systematic design methods. The book compares fixed-time cooperative control with asymptotic cooperative control, demonstrating how the former can achieve better closed-loop performance and disturbance rejection properties. It also discusses the differences from finite-time control, and shows how fixed-time cooperative control can produce the faster rate of convergence and provide an explicit estimate of the settling time independent of initial conditions. This monograph presents multiple applications of fixed-time control schemes, including to distributed optimization of multi-agent systems, making it useful to students, researchers and engineers alike.
This book reports on the latest advances in the study of motion control in biomimetic swimming robots with high speed and high manoeuvrability. It presents state-of-the-art studies on various swimming robots including robotic fish, dolphins and jellyfish in a unified framework, and discusses the potential benefits of applying biomimetic underwater propulsion to autonomous underwater vehicle design, such as: speed, energy economy, enhanced manoeuvrability, and reduced detectability. Given its scope, the book will be of interest to researchers, engineers and graduate students in robotics and ocean engineering who wish to learn about the core principles, methods, algorithms, and applications of biomimetic underwater robots.
This book presents selected research papers from CISC'17, held in MudanJiang, China. The topics covered include Multi-agent system, Evolutionary Computation, Artificial Intelligence, Complex systems, Computation intelligence and soft computing, Intelligent control, Advanced control technology, Robotics and applications, Intelligent information processing, Iterative learning control, Machine Learning, and etc. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.
This book presents state-of-the-art research advances in the field of biologically inspired cooperative control theories and their applications. It describes various biologically inspired cooperative control and optimization approaches and highlights real-world examples in complex industrial processes. Multidisciplinary in nature and closely integrating theory and practice, the book will be of interest to all university researchers, control engineers and graduate students in intelligent systems and control who wish to learn the core principles, methods, algorithms, and applications.
Control systems design methodologies have long suffered the
traditional and myopic dichotomy between time and frequency domain
approaches, each of them being specialized to cope with only
scarcely overlapping performance requirements. This book is aimed
at bridging the two approaches by presenting design methodologies
based on the minimization of a norm (H2/H() of a suitable transfer
function. A distinctive feature of these techniques is the fact
that they do not create only one solution to the design problem,
instead they provide a whole set of admissible solutions which
satisfy a constraint on the maximum deterioration of the
performance index.
Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.
This book investigates observer-fault estimation techniques in detail, while also highlighting recent research and findings regarding fault estimation. Many practical control systems are subject to possible malfunctions, which may cause significant performance loss or even system instability. To improve the reliability, performance and safety of dynamical systems, fault diagnosis techniques are now receiving considerable attention, both in research and applications, and have been the subject of intensive investigations. Fault detection - the essential first step in fault diagnosis - is a binary decision-making process used to determine whether or not a fault has occurred. In turn, fault isolation is used to identify the location of the faulty component, while fault estimation is used to identify the size of the fault online. Compared with the problems involved in fault detection and isolation, fault estimation is considerably more challenging.
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach describes the linear control of uncertain nonlinear systems. The net result is a practical controller design that is simple and surprisingly robust, one that also guarantees convergence to small neighborhoods of desired equilibria or tracking errors that are as close to zero as desired. This methodology differs from current robust feedback controllers characterized by either complex matrix manipulations, complex parameter adaptation schemes and, in other cases, induced high frequency noises through the classical chattering phenomenon. The approach contains many of the cornerstones, or philosophical features, of Model Free Control and ADRC, while exploiting flatness and GPI control in an efficient manner for linear, nonlinear, mono-variable and multivariable systems, including those exhibiting inputs delays. The book contains successful experimental laboratory case studies of diverse engineering problems, especially those relating to mechanical, electro-mechanical, robotics, mobile robotics and power electronics systems.
This book features selected papers presented at the 14th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2019, held in Kursk, Russia, on April 17-20, 2019. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2019 conference was held with the XIII International Scientific and Technical Conference "Vibration 2019", and was organized by Saint Petersburg State University of Aerospace Instrumentation (SUAI), Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and the Southwest State University (SWSU) in with cooperation Russian Foundation for Basic Research (project No. 19-08-20021).
This book discusses the principle of automotive intelligent technology from the point of view of modern sensing and intelligent control. Based on the latest research in the field, it explores safe driving with intelligent vision; intelligent monitoring of dangerous driving; intelligent detection of automobile power and transmission systems; intelligent vehicle navigation and transportation systems; and vehicle-assisted intelligent technology. It draws on the author's research in the field of automotive intelligent technology to explain the fundamentals of vehicle intelligent technology, from the information sensing principle to mathematical models and the algorithm basis, enabling readers to grasp the concepts of automotive intelligent technology. Opening up new scientific horizons and fostering innovative thinking, the book is a valuable resource for researchers as well as undergraduate and graduate students.
The book offers an integrated vision on Cloud and HPC, Big Data, Analytics and virtualization in computing-oriented manufacturing, combining information and communication technologies, service-oriented control of holonic architectures as well as enterprise integration solutions based on SOA principles. It is structured in eight parts, each one grouping research and trends in digital manufacturing and service oriented manufacturing control: Cloud and Cyber-Physical Systems for Smart Manufacturing, Reconfigurable and Self-organized Multi-Agent Systems for Industry and Service, Sustainability Issues in Intelligent Manufacturing Systems, Holonic and Multi-agent System Design for Industry and Service, Should Intelligent Manufacturing Systems be Dependable and Safe?, Service-oriented Management and Control of Manufacturing Systems, Engineering and Human Integration in Flexible and Reconfigurable Industrial Systems,Virtualization and Simulation in Computing-oriented Industry and Service.p>
The book reports on advanced topics in interactive robotics research and practice; in particular, it addresses non-technical obstacles to the broadest uptake of these technologies. It focuses on new technologies that can physically and cognitively interact with humans, including neural interfaces, soft wearable robots, and sensor and actuator technologies; further, it discusses important regulatory challenges, including but not limited to business models, standardization, education and ethical-legal-socioeconomic issues. Gathering the outcomes of the 1st INBOTS Conference (INBOTS2018), held on October 16-20, 2018 in Pisa, Italy, the book addresses the needs of a broad audience of academics and professionals working in government and industry, as well as end users. In addition to providing readers with detailed information and a source of inspiration for new projects and collaborations, it discusses representative case studies highlighting practical challenges in the implementation of interactive robots in a number of fields, as well as solutions to improve communication between different stakeholders. By merging engineering, medical, ethical and political perspectives, the book offers a multidisciplinary, timely snapshot of interactive robotics.
Most physical systems possess parametric uncertainties or unmeasurable parameters and, since parametric uncertainty may degrade the performance of model predictive control (MPC), mechanisms to update the unknown or uncertain parameters are desirable in application. One possibility is to apply adaptive extensions of MPC in which parameter estimation and control are performed online. This book proposes such an approach, with a design methodology for adaptive robust nonlinear MPC (NMPC) systems in the presence of disturbances and parametric uncertainties. One of the key concepts pursued is the concept of set-based adaptive parameter estimation, which provides a mechanism to estimate the unknown parameters as well as an estimate of the parameter uncertainty set. The knowledge of non-conservative uncertain set estimates is exploited in the design of robust adaptive NMPC algorithms that guarantee robustness of the NMPC system to parameter uncertainty. Topics covered include: a review of nonlinear MPC; extensions for performance improvement; introduction to adaptive robust MPC; computational aspects of robust adaptive MPC; finite-time parameter estimation in adaptive control; performance improvement in adaptive control; adaptive MPC for constrained nonlinear systems; adaptive MPC with disturbance attenuation; robust adaptive economic MPC; setbased estimation in discrete-time systems; and robust adaptive MPC for discrete-time systems. |
You may like...
Fundamentals of Algebraic Specification…
Hartmut Ehrig, Bernd Mahr
Hardcover
R1,491
Discovery Miles 14 910
|