![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Robotics is an ever-expanding field and intelligent planning continues to play a major role. Given that the intention of mobile robots is to carry out tasks independent from human aid, robot intelligence is needed to make and plan out decisions based on various sensors. Planning is the fundamental activity that implements this intelligence into the mobile robots to complete such tasks. Understanding problems, challenges, and solutions to path planning and how it fits in is important to the realm of robotics. Intelligent Planning for Mobile Robotics: Algorithmic Approaches presents content coverage on the basics of artificial intelligence, search problems, and soft computing approaches. This collection of research provides insight on both robotics and basic algorithms and could serve as a reference book for courses related to robotics, special topics in AI, planning, applied soft computing, applied AI, and applied evolutionary computing. It is an ideal choice for research students, scholars, and professors alike.
The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2019 International Workshop on Intelligentized Welding Manufacturing (IWIWM'2019) in USA. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering.
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
Knowledge Management makes the management of information and resources within a commercial organization more effective. The contributions of this book investigate the applications of Knowledge Management in the upcoming era of Semantic Web, or Web 3.0, and the opportunities for reshaping and redesigning business strategies for more effective outcomes.
The Microchip PIC family of microcontrollers is the most popular
series of microcontrollers in the world. However, no
microcontroller is of any use without software to make it perform
useful functions. This comprehensive reference focuses on designing
with Microchip s mid-range PIC line using MBASIC, a powerful but
easy to learn programming language. It illustrates MBASIC s
abilities through a series of design examples, beginning with
simple PIC-based projects and proceeding through more advanced
designs. Unlike other references however, it also covers essential
hardware and software design fundamentals of the PIC
microcontroller series, including programming in assembly language
when needed to supplement the capabilities of MBASIC. Details of
hardware/software interfacing to the PIC are also provided.
This book provides research on the state-of-the-art methods for data management in the fourth industrial revolution, with particular focus on cloud.based data analytics for digital manufacturing infrastructures. Innovative techniques and methods for secure, flexible and profi table cloud manufacturing will be gathered to present advanced and specialized research in the selected area.
In this practical reference, popular author Lewin Edwards shows how
to develop robust, dependable real-time systems for robotics and
other control applications, using open-source tools. It
demonstrates efficient and low-cost embedded hardware and software
design techniques, based on Linux as the development platform and
operating system and the Atmel AVR as the primary microcontroller.
The book provides comprehensive examples of sensor, actuator and
control applications and circuits, along with source code for a
number of projects. It walks the reader through the process of
setting up the Linux-based controller, from creating a custom
kernel to customizing the BIOS, to implementing graphical control
interfaces.
This book presents advanced studies on the conversion efficiency, mechanical reliability, and the quality of power related to wind energy systems. The main concern regarding such systems is reconciling the highly intermittent nature of the primary source (wind speed) with the demand for high-quality electrical energy and system stability. This means that wind energy conversion within the standard parameters imposed by the energy market and power industry is unachievable without optimization and control. The book discusses the rapid growth of control and optimization paradigms and applies them to wind energy systems: new controllers, new computational approaches, new applications, new algorithms, and new obstacles.
Modelling in polymer materials science has experienced a dramatic
growth in the last two decades. Advances in modeling methodologies
together with rapid growth in computational power have made it
possible to address increasingly complex questions both of a
fundamental and of a more applied nature.
This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features.
This book presents a variety of perspectives on vision-based applications. These contributions are focused on optoelectronic sensors, 3D & 2D machine vision technologies, robot navigation, control schemes, motion controllers, intelligent algorithms and vision systems. The authors focus on applications of unmanned aerial vehicles, autonomous and mobile robots, industrial inspection applications and structural health monitoring. Recent advanced research in measurement and others areas where 3D & 2D machine vision and machine control play an important role, as well as surveys and reviews about vision-based applications. These topics are of interest to readers from diverse areas, including electrical, electronics and computer engineering, technologists, students and non-specialist readers. * Presents current research in image and signal sensors, methods, and 3D & 2D technologies in vision-based theories and applications; * Discusses applications such as daily use devices including robotics, detection, tracking and stereoscopic vision systems, pose estimation, avoidance of objects, control and data exchange for navigation, and aerial imagery processing; * Includes research contributions in scientific, industrial, and civil applications.
This book focuses on the design, development, and characterization of a compact magnetic laser scanner for microsurgical applications. In addition, it proposes a laser incision depth controller to be used in soft tissue microsurgeries. The use of laser scanners in soft tissue microsurgery results in high quality ablations with minimal thermal damage to surrounding tissue. However, current scanner technologies for microsurgery are limited to free-beam lasers, which require direct line-of-sight to the surgical site, from outside the patient. Developing compact laser micromanipulation systems is crucial to introducing laser-scanning capabilities in hard-to-reach surgical sites, e.g., vocal cords. In this book, the design and fabrication of a magnetically actuated endoscopic laser scanner have been shown, one that introduces high-speed laser scanning for high quality, non-contact tissue ablations in narrow workspaces. Static and dynamic characterization of the system, its teleoperation through a tablet device, and its control modelling for automated trajectory executions have been shown using a fabricated and assembled prototype. Following this, the book discusses how the laser position and velocity control capabilities of the scanner can be used to design a laser incision depth controller to assist surgeons during operations.
Risk detection and cyber security play a vital role in the use and success of contemporary computing. By utilizing the latest technological advances, more effective prevention techniques can be developed to protect against cyber threats. Detecting and Mitigating Robotic Cyber Security Risks is an essential reference publication for the latest research on new methodologies and applications in the areas of robotic and digital security. Featuring extensive coverage on a broad range of topics, such as authentication techniques, cloud security, and mobile robotics, this book is ideally designed for students, researchers, scientists, and engineers seeking current research on methods, models, and implementations of optimized security in digital contexts.
This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.
Intelligent Control techniques are becoming important tools in both academia and industry. Methodologies developed in the field of soft-computing, such as neural networks, fuzzy systems and evolutionary computation, can lead to accommodation of more complex processes, improved performance and considerable time savings and cost reductions. "Intelligent Control Systems Using Computational Intelligence Techniques" details the application of these tools to the field of control systems. Each chapter gives an overview of current approaches in the topic covered, with a set of the most important set references in the field, and then details the author s approach, examining both the theory and practical applications."
This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.
LEGO MINDSTORMS lets you design and program robots that can do just
about anything
Dynamic Thinking: A Primer on Dynamic Field Theory introduces the reader to a new approach to understanding cognitive and neural dynamics using the concepts of Dynamic Field Theory (DFT). Dynamic Neural Fields are formalizations of how neural populations represent the continuous dimensions of perceptual features, movements, and cognitive decisions. The concepts of DFT establish links between brain and behavior, revealing ways in which models of brain function can be tested with both neural and behavioral measures. Thus, DFT bridges the gap between brain and behavior, between neuroscience and the behavioral sciences. The book provides systematic tutorials on the central concepts of DFT and their grounding in both dynamical systems theory and neurophysiology. The concrete mathematical implementation of these concepts is laid out, supported by hands-on exercises that make use of interactive simulators in MATLAB. The book also contains a large set of exemplary case studies in which the concepts and associated models are used to understand how elementary forms of embodied cognition emerge and develop.
This book describes an original improvement in power quality of photovoltaic generation systems obtained by the use of a multilevel inverter implemented with level doubling network (LDN). Modulation principles and harmonic analysis of output voltages are proposed and introduced in detail for both single and three-phase LDN configurations. The analysis is then extended to dc-link current and voltage, with emphasis to low-frequency harmonics and switching frequency ripple. This work represents the first comprehensive implementation of maximum power point tracking (MPPT) schemes using the ripple correlation control (RCC) algorithm in the presence of multiple ripple harmonics, such as in the case of multi level inverters. Numerical simulations and experimental tests are carefully reported here, together with practical insights into the design of dc-link capacitors.
Cognitive architectures represent an umbrella term to describe ways in which the flow of thought can be engineered towards cerebral and behavioral outcomes. Cognitive Architectures are meant to provide top-down guidance, a knowledge base, interactive heuristics and concrete or fuzzy policies for which the virtual character can utilize for intelligent interaction with his/her/its situated virtual environment. Integrating Cognitive Architectures into Virtual Character Design presents emerging research on virtual character artificial intelligence systems and procedures and the integration of cognitive architectures. Emphasizing innovative methodologies for intelligent virtual character integration and design, this publication is an ideal reference source for graduate-level students, researchers, and professionals in the fields of artificial intelligence, gaming, and computer science.
This is the fifth volume of a sub series on Road Vehicle Automation published within the Lecture Notes in Mobility. Like in previous editions, scholars, engineers and analysts from all around the world have contributed chapters covering human factors, ethical, legal, energy and technology aspects related to automated vehicles, as well as transportation infrastructure and public planning. The book is based on the Automated Vehicles Symposium which was hosted by the Transportation Research Board (TRB) and the Association for Unmanned Vehicle Systems International (AUVSI) in San Francisco, California (USA) in July 2017.
|
You may like...
Internet of Things. Information…
Leon Strous, Vinton G. Cerf
Hardcover
R2,103
Discovery Miles 21 030
Foundation Models for Natural Language…
Gerhard PaaĆ, Sven Giesselbach
Hardcover
R884
Discovery Miles 8 840
Implementation of Smart Healthcare…
Chinmay Chakraborty, Subhendu Kumar Pani, …
Paperback
R2,572
Discovery Miles 25 720
Knowledge-Based Software Engineering…
Maria Virvou, Fumihiro Kumeno, …
Hardcover
R4,034
Discovery Miles 40 340
Exploring Future Opportunities of…
Madhulika Bhatia, Tanupriya Choudhury, …
Hardcover
R6,683
Discovery Miles 66 830
Computer and Computing Technologies in…
Daoliang Li, Chunjiang Zhao
Hardcover
R4,166
Discovery Miles 41 660
Deep Learning Applications for…
Monica R. Mundada, Seema S., …
Hardcover
R6,648
Discovery Miles 66 480
Knowledge in Formation - A Computational…
Janos J. Sarbo, Jozsef I. Farkas, …
Hardcover
R2,665
Discovery Miles 26 650
Social Network Based Big Data Analysis…
Mehmet Kaya, Jalal Kawash, …
Hardcover
R3,267
Discovery Miles 32 670
|