Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book introduces readers to the fundamentals of estimation and dynamical system theory, and their applications in the field of multi-source information fused autonomous navigation for spacecraft. The content is divided into two parts: theory and application. The theory part (Part I) covers the mathematical background of navigation algorithm design, including parameter and state estimate methods, linear fusion, centralized and distributed fusion, observability analysis, Monte Carlo technology, and linear covariance analysis. In turn, the application part (Part II) focuses on autonomous navigation algorithm design for different phases of deep space missions, which involves multiple sensors, such as inertial measurement units, optical image sensors, and pulsar detectors. By concentrating on the relationships between estimation theory and autonomous navigation systems for spacecraft, the book bridges the gap between theory and practice. A wealth of helpful formulas and various types of estimators are also included to help readers grasp basic estimation concepts and offer them a ready-reference guide.    Â
This book presents best selected research papers presented at the International Conference on Recent Trends in Communication and Intelligent Systems (ICRTCIS 2020), organized by Arya College of Engineering and IT, Jaipur, on 20-21 November 2020. It discusses the latest technologies in communication and intelligent systems, covering various areas of communication engineering, such as signal processing, VLSI design, embedded systems, wireless communications, and electronics and communications in general. Featuring work by leading researchers and technocrats, the book serves as a valuable reference resource for young researchers and academics as well as practitioners in industry.
The book proposes new technologies and discusses innovative solutions to various problems in the field of communication, circuits, and systems, as reflected in high-quality papers presented at International Conference on Communication, Circuits, and Systems (IC3S 2020) held at KIIT, Bhubaneswar, India from 16 - 18 October 2020. It brings together new works from academicians, scientists, industry professionals, scholars, and students together to exchange research outcomes and open up new horizons in the areas of signal processing, communications, and devices.
This book provides a unique approach to derive model-based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for the generalized modeling approach of rotating field machines, which leads to the development of universal field-oriented control algorithms. Contrary to this, direct torque control algorithms, using observer-based methods, are developed for switched reluctance machines. Tutorials are included at the end of each chapter, and the reader is encouraged to execute these tutorials in order to gain familiarity with the dynamic behavior of drive systems. This updated edition uses PLECS (R) simulation and vector processing tools that were specifically adopted for the purpose of these hands-on tutorials. Hence, Advanced Electrical Drives encourages "learning by doing" and the experienced drive specialist may find the simulation tools useful to design high-performance torque controllers. Although it is a powerful reference in its own right, when used in conjunction with the companion texts Fundamentals of Electrical Drives and Applied Control of Electrical Drives, this book provides a uniquely comprehensive reference set that takes readers all the way from understanding the basics of how electrical drives work, to deep familiarity with advanced features and models, to a mastery of applying the concepts to actual hardware in practice. Teaches readers to perform insightful analysis of AC electrical machines and drives; Introduces new modeling methods and modern control techniques for switched reluctance drives; Updated to use PLECS (R) simulation tools for modeling electrical drives, including new and more experimental results; Numerous tutorials at end of each chapter to learn by doing, step-by-step; Includes extra material featuring "build and play" lab modules, for lectures and self-study.
This book presents iterative learning control (ILC) to address practical issues of flexible structures. It is divided into four parts: Part I provides a general introduction to ILC and flexible structures, while Part II proposes various types of ILC for simple flexible structures to address issues such as vibration, input saturation, input dead-zone, input backlash, external disturbances, and trajectory tracking. It also includes simple partial differential equations to deal with the common problems of flexible structures. Part III discusses the design of ILC for flexible micro aerial vehicles and two-link manipulators, and lastly, Part IV offers a summary of the topics covered. Unlike most of the literature on ILC, which focuses on ordinary differential equation systems, this book explores distributed parameter systems, which are comparatively less stabilized through ILC.Including a comprehensive introduction to ILC of flexible structures, it also examines novel approaches used in ILC to address input constraints and disturbance rejection. This book is intended for researchers, graduate students and engineers in various fields, such as flexible structures, external disturbances, nonlinear inputs and tracking control.
This book focuses on the fault diagnosis observer design for the switched system. Model-based fault diagnosis and fault tolerant control are one of the most popular research directions in recent decades. It contains eight chapters. Every chapter is independent in the method of observer design, but all chapters are around the same topic. Besides, in each chapter, the model description and theoretical results are firstly provided, then some practical application examples are illustrated to prove the obtained results. The advanced theoretical methodologies will benefit researchers or engineers in the area of safety engineering and the arrangement of the structure will help the readers to understand the content easily.
This book focuses on the design, development, and characterization of a compact magnetic laser scanner for microsurgical applications. In addition, it proposes a laser incision depth controller to be used in soft tissue microsurgeries. The use of laser scanners in soft tissue microsurgery results in high quality ablations with minimal thermal damage to surrounding tissue. However, current scanner technologies for microsurgery are limited to free-beam lasers, which require direct line-of-sight to the surgical site, from outside the patient. Developing compact laser micromanipulation systems is crucial to introducing laser-scanning capabilities in hard-to-reach surgical sites, e.g., vocal cords. In this book, the design and fabrication of a magnetically actuated endoscopic laser scanner have been shown, one that introduces high-speed laser scanning for high quality, non-contact tissue ablations in narrow workspaces. Static and dynamic characterization of the system, its teleoperation through a tablet device, and its control modelling for automated trajectory executions have been shown using a fabricated and assembled prototype. Following this, the book discusses how the laser position and velocity control capabilities of the scanner can be used to design a laser incision depth controller to assist surgeons during operations.
This volume of the series ARENA2036 compiles the outcomes of the first Stuttgart Conference on Automotive Production (SCAP2020). It contains peer-reviewed contributions from a theoretical as well as practical vantage point and is topically structured according to the following four sections: It discusses (I) Novel Approaches for Efficient Production and Assembly Planning, (II) Smart Production Systems and Data Services, (III) Advances in Manufacturing Processes and Materials, and (IV) New Concepts for Autonomous, Collaborative Intralogistics. Given the restrictive circumstances of 2020, the conference was held as a fully digital event divided into two parts. It opened with a pre-week, allowing everyone to peruse the scientific contributions at their own pace, followed by a two-day live event that enabled experts from the sciences and the industry to engage in various discussions. The conference has proven itself as an insightful forum that allowed for an expertly exchange regarding the pivotal Advances in Automotive Production and Technology.
The subject of this book is theory, principles and methods used in radar algorithm development with a special focus on automotive radar signal processing. In the automotive industry, autonomous driving is currently a hot topic that leads to numerous applications for both safety and driving comfort. It is estimated that full autonomous driving will be realized in the next twenty to thirty years and one of the enabling technologies is radar sensing. This book presents both detection and tracking topics specifically for automotive radar processing. It provides illustrations, figures and tables for the reader to quickly grasp the concepts and start working on practical solutions. The complete and comprehensive coverage of the topic provides both professionals and newcomers with all the essential methods and tools required to successfully implement and evaluate automotive radar processing algorithms.
This book describes the development of portable, wearable, and highly customizable hand exoskeletons to aid patients suffering from hand disabilities. It presents an original approach for the design of human hand motion assistance devices that relies on (i) an optimization-based kinematic scaling procedure, which guarantees a significant adaptability to the user's hands motion, and (ii) a topology optimization-based design methodology, which allowed the design of a lightweight, comfortable device with a high level of performance. The book covers the whole process of hand exoskeleton development, from establishing a new design strategy, to the construction and testing of hand exoskeleton prototypes, using additive manufacturing techniques. As such, it offers timely information to both researchers and engineers developing human motion assistance systems, especially wearable ones.
This book offers a comprehensive overview of recently developed space multi-tethers, such as maneuverable space tethered nets and space tethered formation. For each application, it provides detailed derivatives to describe and analyze the mathematical model of the system, and then discusses the design and proof of different control schemes for various problems. The dynamics modeling presented is based on Newton and Lagrangian mechanics, and the book also introduces Hamilton mechanics and Poincare surface of section for dynamics analysis, and employs both centralized and distributed controllers to derive the formation question of the multi-tethered system. In addition to the equations and text, it includes 3D design drawings, schematic diagrams, control scheme blocks and tables to make it easy to understand. This book is intended for researchers and graduate students in the fields of astronautics, control science, and engineering.
Robotics is an ever-expanding field and intelligent planning continues to play a major role. Given that the intention of mobile robots is to carry out tasks independent from human aid, robot intelligence is needed to make and plan out decisions based on various sensors. Planning is the fundamental activity that implements this intelligence into the mobile robots to complete such tasks. Understanding problems, challenges, and solutions to path planning and how it fits in is important to the realm of robotics. Intelligent Planning for Mobile Robotics: Algorithmic Approaches presents content coverage on the basics of artificial intelligence, search problems, and soft computing approaches. This collection of research provides insight on both robotics and basic algorithms and could serve as a reference book for courses related to robotics, special topics in AI, planning, applied soft computing, applied AI, and applied evolutionary computing. It is an ideal choice for research students, scholars, and professors alike.
This book is a compilation of advanced research and applications on robotic item picking and warehouse automation for e-commerce applications. The works in this book are based on results that came out of the Amazon Robotics Challenge from 2015-2017, which focused on fully automated item picking in a warehouse setting, a topic that has been assumed too complicated to solve or has been reduced to a more tractable form of bin picking or single-item table top picking. The book's contributions reveal some of the top solutions presented from the 50 participant teams. Each solution works to address the time-constraint, accuracy, complexity, and other difficulties that come with warehouse item picking. The book covers topics such as grasping and gripper design, vision and other forms of sensing, actuation and robot design, motion planning, optimization, machine learning and artificial intelligence, software engineering, and system integration, among others. Through this book, the authors describe how robot systems are built from the ground up to do a specific task, in this case, item picking in a warehouse setting. The compiled works come from the best robotics research institutions and companies globally.
This monograph presents a technique, developed by the author, to design asymptotically exponentially stabilizing finite-dimensional boundary proportional-type feedback controllers for nonlinear parabolic-type equations. The potential control applications of this technique are wide ranging in many research areas, such as Newtonian fluid flows modeled by the Navier-Stokes equations; electrically conducted fluid flows; phase separation modeled by the Cahn-Hilliard equations; and deterministic or stochastic semi-linear heat equations arising in biology, chemistry, and population dynamics modeling. The text provides answers to the following problems, which are of great practical importance: Designing the feedback law using a minimal set of eigenfunctions of the linear operator obtained from the linearized equation around the target state Designing observers for the considered control systems Constructing time-discrete controllers requiring only partial knowledge of the state After reviewing standard notations and results in functional analysis, linear algebra, probability theory and PDEs, the author describes his novel stabilization algorithm. He then demonstrates how this abstract model can be applied to stabilization problems involving magnetohydrodynamic equations, stochastic PDEs, nonsteady-states, and more. Boundary Stabilization of Parabolic Equations will be of particular interest to researchers in control theory and engineers whose work involves systems control. Familiarity with linear algebra, operator theory, functional analysis, partial differential equations, and stochastic partial differential equations is required.
This book presents a unified mathematical treatment of diverse problems in the general domain of robotics and associated fields using Clifford or geometric alge- bra. By addressing a wide spectrum of problems in a common language, it offers both fresh insights and new solutions that are useful to scientists and engineers working in areas related with robotics. It introduces non-specialists to Clifford and geometric algebra, and provides ex- amples to help readers learn how to compute using geometric entities and geomet- ric formulations. It also includes an in-depth study of applications of Lie group theory, Lie algebra, spinors and versors and the algebra of incidence using the universal geometric algebra generated by reciprocal null cones. Featuring a detailed study of kinematics, differential kinematics and dynamics using geometric algebra, the book also develops Euler Lagrange and Hamiltoni- ans equations for dynamics using conformal geometric algebra, and the recursive Newton-Euler using screw theory in the motor algebra framework. Further, it comprehensively explores robot modeling and nonlinear controllers, and discusses several applications in computer vision, graphics, neurocomputing, quantum com- puting, robotics and control engineering using the geometric algebra framework. The book also includes over 200 exercises and tips for the development of future computer software packages for extensive calculations in geometric algebra, and a entire section focusing on how to write the subroutines in C++, Matlab and Maple to carry out efficient geometric computations in the geometric algebra framework. Lastly, it shows how program code can be optimized for real-time computations. An essential resource for applied physicists, computer scientists, AI researchers, roboticists and mechanical and electrical engineers, the book clarifies and demon- strates the importance of geometric computing for building autonomous systems to advance cognitive systems research.
This book comprises select peer-reviewed proceedings of the Control Instrumentation System Conference (CISCON 2019) in the specialized area of cyber-physical systems. The topics include current trends in the areas of instrumentation, sensors and systems, industrial automation and control, image and signal processing, robotics, renewable energy, power systems and power drives, and artificial intelligence technologies. Wide-ranging applications in various fields such as aerospace, biomedical, optical imaging and biomechanics are covered in the book. The contents of this book are useful for students, researchers as well as industry professionals working in the field of instrumentation and control engineering.
This book describes the theoretical framework of parallel manipulators and presents examples of their application. The theoretical part begins with the theory of parallel manipulator synthesis. Working on this basis, various topology designs of one-loop and multiloop parallel manipulators are then obtained. The next section describes the zero parameters method for the analysis of mechanism (manipulator) structure with closed kinematic circuits, and includes examples of its application, highlighting its advantages compared to traditional methods. The book then presents the redundant parameters method for determining the position of special parallel manipulator links, and discusses its application in solving the direct problem of link position for multiloop manipulators. It also addresses one-loop and multiloop manipulators, and includes a solution for the direct and inverse link position problems of kinematics. In closing, the book presents a range of potential applications for parallel manipulator. These examples are intended to promote the development and implementation of new engineering solutions, e.g. in seismic protection systems, renewable energy and other areas. The book includes a wealth of material that can be used for teaching undergraduate, graduate and PhD students majoring in robotics, automation and related fields, and can also be used by researchers to solve problems in connection with introducing robotics technologies.
This book offers a comprehensive reference guide for modeling humanoid robots using intelligent and fuzzy systems. It provides readers with the necessary intelligent and fuzzy tools for controlling humanoid robots by incomplete, vague, and imprecise information or insufficient data, where classical modeling approaches cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including fuzzy control, metaheuristic-based control, neutrosophic control, etc. To foster reader comprehension, all chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers, and postgraduate students pursuing research on humanoid robots. Moreover, by extending all the main aspects of humanoid robots to its intelligent and fuzzy counterparts, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas, and developments.
This book proposes some novel approaches for finding unmanned aerial vehicle trajectories to reach targets with unknown location in minimum time. At first, it reviews probabilistic search algorithms that have been used for dealing with the minimum time search (MTS) problem, and discusses how metaheuristics, and in particular the ant colony optimization algorithm (ACO), can help to find high-quality solutions with low computational time. Then, it describes two ACO-based approaches to solve the discrete MTS problem and the continuous MTS problem, respectively. In turn, it reports on the evaluation of the ACO-based discrete and continuous approaches to the MTS problem in different simulated scenarios, showing that the methods outperform in most all the cases over other state-of-the-art approaches. In the last part of the thesis, the work of integration of the proposed techniques in the ground control station developed by Airbus to control ATLANTE UAV is reported in detail, providing practical insights into the implementation of these methods for real UAVs.
This book is of interest to researchers wanting to know more about the latest topics and methods in the fields of the kinematics, control and design of robotic systems. The papers cover the full range of robotic systems, including serial, parallel and cable-driven manipulators. The systems range from being less than fully mobile, to kinematically redundant, to over-constrained. The book brings together 43 peer-reviewed papers. They report on the latest scientific and applied achievements. The main theme that connects them is the movement of robots in the most diverse areas of application.
This book presents high-quality contributions in the subject area of Aerospace System Science and Engineering, including topics such as: Trans-space vehicle systems design and integration, Air vehicle systems, Space vehicle systems, Near-space vehicle systems, Opto-electronic system, Aerospace robotics and unmanned system, Aerospace robotics and unmanned system, Communication, navigation, and surveillance, Dynamics and control, Intelligent sensing and information fusion, Aerodynamics and aircraft design, Aerospace propulsion, Avionics system, Air traffic management, Earth observation, Deep space exploration, and Bionic micro-aircraft/spacecraft. The book collects selected papers presented at the 4th International Conference on Aerospace System Science and Engineering (ICASSE 2020), organized by Shanghai Jiao Tong University, China, held on 14-16 July 2020 as virtual event due to COVID-19. It provides a forum for experts in aeronautics and astronautics to share new ideas and findings. ICASSE conferences have been organized annually since 2017 and hosted in Shanghai, Moscow, and Toronto in turn, where the three regional editors of the journal Aerospace Systems are located.
As a segment of the broader science of automation, robotics has achieved tremendous progress in recent decades due to the advances in supporting technologies such as computers, control systems, cameras and electronic vision, as well as micro and nanotechnology. Prototyping a design helps in determining system parameters, ranges, and in structuring an overall better system. Robotics is one of the industrial design fields in which prototyping is crucial for improved functionality. Prototyping of Robotic Systems: Applications of Design and Implementation provides a framework for conceptual, theoretical, and applied research in robotic prototyping and its applications. Covering the prototyping of various robotic systems including the complicated industrial robots, the tiny and delicate nanorobots, medical robots for disease diagnosis and treatment, as well as the simple robots for educational purposes, this book is a useful tool for those in the field of robotics prototyping and as a general reference tool for those in related fields.
One of The Sunday Times' Business Books of the Year Technology is putting our humanity at risk to an unprecedented degree. This book is not for engineers who write the code or the policy makers who claim they can regulate it. This is a book for you. Because, believe it or not, you are the only one that can fix it. - Mo Gawdat 'From a brilliant mind comes a terrifying prediction' - Tim Ash, bestselling author of Unleash Your Primal Brain Artificial intelligence is smarter than humans. It can process information at lightning speed and remain focused on specific tasks without distraction. AI can see into the future, predicting outcomes and even use sensors to see around physical and virtual corners. So why does AI frequently get it so wrong? The answer is us. Humans design the algorithms that define the way that AI works, and the processed information reflects an imperfect world. Does that mean we are doomed? In Scary Smart, Mo Gawdat, the internationally bestselling author of Solve for Happy, draws on his considerable expertise to answer this question and to show what we can all do now to teach ourselves and our machines how to live better. With more than thirty years' experience working at the cutting-edge of technology and his former role as chief business officer of Google [X], no one is better placed than Mo Gawdat to explain how the Artificial Intelligence of the future works. By 2049 AI will be a billion times more intelligent than humans. Scary Smart explains how to fix the current trajectory now, to make sure that the AI of the future can preserve our species. This book offers a blueprint, pointing the way to what we can do to safeguard ourselves, those we love and the planet itself.
This book shows in a comprehensive presentation how Bond Graph methodology can support model-based control, model-based fault diagnosis, fault accommodation, and failure prognosis by reviewing the state-of-the-art, presenting a hybrid integrated approach to Bond Graph model-based fault diagnosis and failure prognosis, and by providing a review of software that can be used for these tasks. The structured text illustrates on numerous small examples how the computational structure superimposed on an acausal bond graph can be exploited to check for control properties such as structural observability and control lability, perform parameter estimation and fault detection and isolation, provide discrete values of an unknown degradation trend at sample points, and develop an inverse model for fault accommodation. The comprehensive presentation also covers failure prognosis based on continuous state estimation by means of filters or time series forecasting. This book has been written for students specializing in the overlap of engineering and computer science as well as for researchers, and for engineers in industry working with modelling, simulation, control, fault diagnosis, and failure prognosis in various application fields and who might be interested to see how bond graph modelling can support their work. Presents a hybrid model-based, data-driven approach to failure prognosis Highlights synergies and relations between fault diagnosis and failure prognostic Discusses the importance of fault diagnosis and failure prognostic in various fields |
You may like...
Robotics Software Design and Engineering
Alejandro Rafael Garcia Ramirez, Augusto Loureiro da Costa
Hardcover
Driving Innovation and Productivity…
Ardavan Amini, Stephen Bushell, …
Hardcover
R7,032
Discovery Miles 70 320
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,856
Discovery Miles 38 560
Metrological Infrastructure
Beat Jeckelmann, Robert Edelmaier
Hardcover
R4,057
Discovery Miles 40 570
|