![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Accessible to all readers, including students of secondary school
and amateur technology enthusiasts, Robotics, Mechatronics, and
Artificial Intelligence simplifies the process of finding basic
circuits to perform simple tasks, such as how to control a DC or
step motor, and provides instruction on creating moving robotic
parts, such as an "eye" or an "ear." Though many companies offer
kits for project construction, most experimenters want to design
and build their own robots and other creatures specific to their
needs and goals. With this new book by Newton Braga, hobbyists and
experimenters around the world will be able to decide what skills
they want to feature in a project and then choose the right
"building blocks" to create the ideal results.
Fuelled by advances in computer technology, model-based approaches to the control of industrial processes are now widespread. While there is an enormous literature on modelling, the difficult first step of selecting an appropriate model structure has received almost no attention. This book fills the gap, providing practical insight into model selection for chemical processes and emphasizing structures suitable for control system design.
Reliability is one of the fundamental criteria in engineering systems. Design and maintenance serve to support it throughout the systems life. As such, maintenance acts in parallel to production and can have a great impact on the availability and capacity of production and the quality of the products. The authors describe current and innovative methods useful to industry and society.
Robotic animals are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. More specifically, in the case of collective animal behavior research, the robotic device can interact with animals by generating and exploiting signals relevant for social behavior. Once perceived by the animal society as conspecific, these robots can become powerful tools to study the animal behaviors, as they can at the same time monitor the changes in behavior and influence the collective choices of the animal society. In this book, we present novel robotized tools that can integrate shoals of fish in order to study their collective behaviors. We used the current state of the art on the zebrafish social behavior to define the specifications of the robots, and we performed stimuli analysis to improve their developments. Bio-inspired controllers were designed based on data extracted from experiments with zebrafish for the robots to mimic the zebrafish locomotion underwater. Experiments involving mixed groups of fish and robots qualified the robotic system to be integrated among a zebrafish shoal and to be able to influence the collective decisions of the fish. These results are very promising for the field of animal-robot interaction studies, as we showed the effect of the robots in long-duration experiments and repetitively, with the same order of response from the animals.
This book contains thirty-five selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2017). This was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters reflect the state of the art in theoretical and numerical methods and tools for optimization, and engineering design and societal applications. The volume focuses particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.
This book presents various techniques to carry out the gait modeling, the gait patterns synthesis, and the control of biped robots. Some general information on the human walking, a presentation of the current experimental biped robots, and the application of walking bipeds are given. The modeling is based on the decomposition on a walking step into different sub-phases depending on the way each foot stands into contact on the ground. The robot design is dealt with according to the mass repartition and the choice of the actuators. Different ways to generate walking patterns are considered, such as?passive walking and gait synthesis performed using optimization technique. Control based on the robot modeling, neural network methods, or intuitive approaches are presented. The unilaterality of contact is dealt with using on-line adaptation of the desired motion.
This book offers a collection of original peer-reviewed contributions presented at the 3rd International and 18th National Conference on Machines and Mechanisms (iNaCoMM), organized by Division of Remote Handling & Robotics, Bhabha Atomic Research Centre, Mumbai, India, from December 13th to 15th, 2017 (iNaCoMM 2017). It reports on various theoretical and practical features of machines, mechanisms and robotics; the contributions include carefully selected, novel ideas on and approaches to design, analysis, prototype development, assessment and surveys. Applications in machine and mechanism engineering, serial and parallel manipulators, power reactor engineering, autonomous vehicles, engineering in medicine, image-based data analytics, compliant mechanisms, and safety mechanisms are covered. Further papers provide in-depth analyses of data preparation, isolation and brain segmentation for focused visualization and robot-based neurosurgery, new approaches to parallel mechanism-based Master-Slave manipulators, solutions to forward kinematic problems, and surveys and optimizations based on historical and contemporary compliant mechanism-based design. The spectrum of contributions on theory and practice reveals central trends and newer branches of research in connection with these topics.
The book presents research from Rob|Arch 2018, the fourth international conference on robotic fabrication in architecture, art, and design. In capturing the myriad of scientific advances in robotics fabrication that are currently underway - such as collaborative design tools, computerised materials, adaptive sensing and actuation, advanced construction, on-site and cooperative robotics, machine-learning, human-machine interaction, large-scale fabrication and networked workflows, to name but a few - this compendium reveals how robotic fabrication is becoming a driver of scientific innovation, cross-disciplinary fertilization and creative capacity of an unprecedented kind.
These proceedings present selected research papers from CISC'18, held in Wenzhou, China. The topics include Multi-Agent Systems, Networked Control Systems, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Nonlinear and Variable Structure Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles, and so on. Engineers and researchers from academia, industry, and government can get an insight view of the solutions combining ideas from multiple disciplines in the field of intelligent systems.
This book focuses on the design, implementation and applications of embedded systems and advanced industrial controls with microcontrollers. It combines classical and modern control theories as well as practical control programming codes to help readers learn control techniques easily and effectively. The book covers both linear and nonlinear control techniques to help readers understand modern control strategies. The author provides a detailed description of the practical considerations and applications in linear and nonlinear control systems. They concentrate on the ARM (R) Cortex (R)-M4 MCU system built by Texas Instruments (TM) called TM4C123GXL, in which two ARM (R) Cortex (R)-M4 MCUs, TM4C123GH6PM, are utilized. In order to help the reader develop and build application control software for a specified microcontroller unit. Readers can quickly develop and build their applications by using sample project codes provided in the book to access specified peripherals. The book enables readers to transfer from one interfacing protocol to another, even if they only have basic and fundamental understanding and basic knowledge of one interfacing function. Classical and Modern Controls with Microcontrollers is a powerful source of information for control and systems engineers looking to expand their programming knowledge of C, and of applications of embedded systems with microcontrollers. The book is a textbook for college students majored in CE, EE and ISE to learn and study classical and modern control technologies. The book can also be adopted as a reference book for professional programmers working in modern control fields or related to intelligent controls and embedded computing and applications. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book presents the most important tools, techniques, strategy and diagnostic methods used in industrial engineering. The current widely accepted methods of diagnosis and their properties are discussed. Also, the possible fruitful areas for further research in the field are identified.
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems.
Robotic and mechatronic systems, autonomous vehicles, electric power systems and smart grids, as well as manufacturing and industrial production systems can exhibit complex nonlinear dynamics or spatio-temporal dynamics which need to be controlled to ensure good functioning and performance. In this comprehensive reference, the authors present new and innovative control and estimation methods and techniques based on dynamical nonlinear and partial differential equation systems. Such results can be classified in five main domains for the control of complex nonlinear dynamical systems using respectively methods of approximate (local) linearization, methods of exact (global) linearization, Lyapunov stability approaches, control and estimation of distributed parameter systems and stochastic estimation and fault diagnosis methods. Control and Estimation of Dynamical Nonlinear and Partial Differential Equation Systems: Theory and applications will be of interest to electrical engineering, physics, computer science, robotics and mechatronics researchers and professionals working on control problems, condition monitoring, estimation and fault diagnosis and isolation problems. It will also be useful to skilled technical personnel working on applications in robotics, energy conversion, transportation and manufacturing.
The author presents current work in bond graph methodology by
providing a compilation of contributions from experts across the
world that covers theoretical topics, applications in various areas
as well as software for bond graph modeling.
The book describes an approach to the multi-agent systems (MAS) design for applications of robotic soccer in the MiroSot category. The described MAS is designed for dynamic, quickly changing environments, in which not only the actions of our MAS are observed, but also those of the opposing MAS. It actively tries to affect the environment to score goals faster than the opposing MAS. Multi-agent systems (MAS) are mostly applied in the environments in which they exist and act without an opposing system. The book also describes strategies based on a supervisor that makes decisions depending on behavior prediction of the opposing MAS and the ball movement in the working place. A sophisticated distribution of tasks was designed for each agent to cooperate in order score goals as fast as possible. Simultaneously, these agents try, by permitted means, to prevent the enemy agents from scoring goals. The approach described is an excellent guide to the constantly evolving abilities of mobile robotics, both for real-world applications, such as cooperation of multiple robots in life-saving activities, and for the steadily developing applications of mobile robots in various robotic competitions (e.g. Robocup, etc.). The book provides readers with high-level knowledge on how to design strategies and how to implement such systems, and the ideas presented enable them to further refine the approach utilizing the latest hardware and use it in new systems implementations of sophisticated intelligent engineering.
The field of soft computing is emerging from the cutting edge
research over the last ten years devoted to fuzzy engineering and
genetic algorithms. The subject is being called soft computing and
computational intelligence. With acceptance of the research
fundamentals in these important areas, the field is expanding into
direct applications through engineering and systems science.
PID Control with Intelligent Compensation for Exoskeleton Robots explains how to use neural PD and PID controls to reduce integration gain, and provides explicit conditions on how to select linear PID gains using proof of semi-global asymptotic stability and local asymptotic stability with a velocity observer. These conditions are applied in both task and joint spaces, with PID controllers compensated by neural networks. This is a great resource on how to combine traditional PD/PID control techniques with intelligent control. Dr. Wen Yu presents several leading-edge methods for designing neural and fuzzy compensators with high-gain velocity observers for PD control using Lyapunov stability. Proportional-integral-derivative (PID) control is widely used in biomedical and industrial robot manipulators. An integrator in a PID controller reduces the bandwidth of the closed-loop system, leads to less-effective transient performance and may even destroy stability. Many robotic manipulators use proportional-derivative (PD) control with gravity and friction compensations, but improved gravity and friction models are needed. The introduction of intelligent control in these systems has dramatically changed the face of biomedical and industrial control engineering.
Robots challenge humans' beliefs and expectations. Hence, regardless of whether they are the audience of a conference, the visitors of a lab, the citizens in general, some journalists, or the European Parliament, the first step in order to gain a better understanding of the field of robotics is obviously to consult the experts. Roboticists seem indeed to be in the best position to guide society in this matter, whether it is in the everyday life or within an official institution. Today however, there is a gap between the robots, as they are actually thought and built, and the intelligent and autonomous machines, as they are perceived by the society. How can we explain it? Do the words borrowed from the living organisms and used to describe robots play a role in the confusion about the status of the discipline of robotics? The texts gathered within this book focus on the problematic of wording robotics from various perspectives. They are the results of a unique interdisciplinary meeting gathering roboticists, linguists, philosophers and neuroscientists, the 4th Workshop of Anthropomorphic Motion Factory held at LAAS-CNRS in Toulouse on Nov 31st - Dec 1st 2017.
Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using "computationally intensive controls," so the second part of this book addresses the solution of optimization problems in "real" time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.
Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic. Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as 'optimal' trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other's dynamics.
Advanced research in the field of mechatronics and robotics represents a unifying interdisciplinary and intelligent engineering science paradigm. It is a holistic, concurrent, and interdisciplinary engineering science that identifies novel possibilities of synergizing and fusing different disciplines. The Handbook of Research on Advanced Mechatronic Systems and Intelligent Robotics is a collection of innovative research on the methods and applications of knowledge in both theoretical and practical skills of intelligent robotics and mechatronics. While highlighting topics including green technology, machine learning, and virtual manufacturing, this book is ideally designed for researchers, students, engineers, and computer practitioners seeking current research on developing innovative ideas for intelligent robotics and autonomous and smart interdisciplinary mechatronic products. |
You may like...
Electrical Trade Theory N1 Student Book
S.Z. Mathonsi, N.P. Zwane
Paperback
R413
Discovery Miles 4 130
Researching Modern Evangelicalism - A…
Robert D. Shuster, James Stambaugh, …
Hardcover
Demand-Driven Web Services - Theory…
Zhaohao Sun, John Yearwood
Hardcover
R8,127
Discovery Miles 81 270
Theory of Approximate Functional…
Madjid Eshaghi Gordji, Sadegh Abbaszadeh
Hardcover
R1,379
Discovery Miles 13 790
Source-Grid Interaction of Wind Power…
Da Xie, Xitian Wang, …
Paperback
R3,340
Discovery Miles 33 400
Still Struggling for Equality - American…
Plummer A. Jones
Hardcover
Introduction to the Boost C++ Libraries…
Robert Demming, Daniel J. Duffy
Hardcover
R1,497
Discovery Miles 14 970
|