![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This carefully edited volume is the outcome of the eleventh edition of the Workshop on Algorithmic Foundations of Robotics (WAFR), which is the premier venue showcasing cutting edge research in algorithmic robotics. The eleventh WAFR, which was held August 3-5, 2014 at Bogazici University in Istanbul, Turkey continued this tradition. This volume contains extended versions of the 42 papers presented at WAFR. These contributions highlight the cutting edge research in classical robotics problems (e.g. manipulation, motion, path, multi-robot and kinodynamic planning), geometric and topological computation in robotics as well novel applications such as informative path planning, active sensing and surgical planning. This book - rich by topics and authoritative contributors - is a unique reference on the current developments and new directions in the field of algorithmic foundations.
This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.
This volume contains the proceedings of the 26th International Conference on Robotics in Alpe-Adria-Danube Region, RAAD 2017, held at the Polytechnic University of Turin, Italy, from June 21-23, 2017. The conference brought together academic and industrial researchers in robotics from 30 countries, the majority of them affiliated to the Alpe-Adria-Danube Region, and their worldwide partners. RAAD 2017 covered all major areas of R&D and innovation in robotics, including the latest research trends. The book provides an overview on the advances in service and industrial robotics. The topics are presented in a sequence starting from the classical robotic subjects, such as kinematics, dynamics, structures, control, and ending with the newest topics, like human-robot interaction and biomedical applications. Researchers involved in the robotic field will find this an extraordinary and up-to-date perspective on the state of the art in this area.
This volume presents selected aspects of non-integer, or fractional order systems, whose analysis, synthesis and applications have increasingly become a real challenge for various research communities, ranging from science to engineering. The spectrum of applications of the fractional order calculus has incredibly expanded, in fact it would be hard to find a science/engineering-related subject area where the fractional calculus had not been incorporated. The content of the fractional calculus is ranged from pure mathematics to engineering implementations and so is the content of this volume. The volume is subdivided into six parts, reflecting particular aspects of the fractional order calculus. The first part contains a single invited paper on a new formulation of fractional-order descriptor observers for fractional-order descriptor continous LTI systems. The second part provides new elements to the mathematical theory of fractional-order systems. In the third part of this volume, a bunch of new results in approximation, modeling and simulations of fractional-order systems is given. The fourth part presents new solutions to some problems in controllability and control of non-integer order systems, in particular fractional PID-like control. The fifth part analyzes the stability of non-integer order systems and some new results are offered in this important respect, in particular for discrete-time systems. The final, sixth part of this volume presents a spectrum of applications of the noninteger order calculus, ranging from bi-fractional filtering, in particular of electromyographic signals, through the thermal diffusion and advection diffusion processes to the SIEMENS platform implementation. This volume's papers were all subjected to stimulating comments and discussions from the active audience of the RRNR'2014, the 6th Conference on Non-integer Order Calculus and Its Applications that was organized by the Department of Electrical, Control and Computer Engineering, Opole University of Technology, Opole, Poland.
This book seeks to interpret connections between the machine brain, mind and vision in an alternative way and promote future research into the Interdisciplinary Evolution of Machine Brain (IEMB). It gathers novel research on IEMB, and offers readers a step-by-step introduction to the theory and algorithms involved, including data-driven approaches in machine learning, monitoring and understanding visual environments, using process-based perception to expand insights, mechanical manufacturing for remote sensing, reconciled connections between the machine brain, mind and vision, and the interdisciplinary evolution of machine intelligence. This book is intended for researchers, graduate students and engineers in the fields of robotics, Artificial Intelligence and brain science, as well as anyone who wishes to learn the core theory, principles, methods, algorithms, and applications of IEMB.
This book presents advanced technologies used in practice to enable early recognition and tracking of various threats to national security. It discusses practical applications, examples and recent challenges in the application fields using sophisticated sensory devices, embedded designs and airborne and ground unmanned vehicles. Undeniably rapid advances in the development of sophisticated sensory devices, significant increases of computing power available to embedded designs and the development of airborne and ground unmanned vehicles offer almost unlimited possibilities for fighting various types of pathologies affecting our societies. The book provides scientists, researchers, engineers and graduate students involved in computer vision, image processing, data fusion, control algorithms, mechanics, data mining, navigation and integrated circuit (IC) with numerous valuable, useful and practical suggestions and solutions.
Over the past decade, industrial developments in the field of robotics have been aimed primarily at manufacturing. Many of the cases considered for automation have involved the processing of well-defined and rigid products within the motor car and aerospace industries. Current literature includes a large number of books covering both the fundamentals and applications of robots, but none of these books deals with food production as a specialist subject. In the recent past, considerable work has been done examining the use of robots for handling and processing food items. The main objective of this book is to provide an overview of specific applications in the meat, fish and poultry industries, thus increasing the awareness and confidence of the food industry in this technology and the opportunities it offers.
This book focuses on universal nonlinear dynamics model of mesoscale eddies. The results of this book are not only the direct-type applications of pure mathematical limit cycle theory and fractal theory in practice but also the classic combination of nonlinear dynamic systems in mathematics and the physical oceanography. The universal model and experimental verification not only verify the relevant results that are obtained by Euler's form but also, more importantly, are consistent with observational numerical statistics. Due to the universality of the model, the consequences of the system are richer and more complete. The comprehensive and systematic mathematical modeling of mesoscale eddies is one of the major features of the book, which is particularly suited for readers who are interested to learn fractal analysis and prediction in physical oceanography. The book benefits researchers, engineers, and graduate students in the fields of mesoscale eddies, fractal, chaos, and other applications, etc.
This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry.
This book is devoted to embedded systems (ESs), which can now be found in practically all fields of human activity. Embedded systems are essentially a special class of computing systems designed for monitoring and controlling objects of the physical world. The book begins by discussing the distinctive features of ESs, above all their cybernetic-physical character, and how they can be designed to deliver the required performance with a minimum amount of hardware. In turn, it presents a range of design methodologies. Considerable attention is paid to the hardware implementation of computational algorithms. It is shown that different parts of complex ESs could be implemented using models of finite state machines (FSMs). Also, field-programmable gate arrays (FPGAs) are very often used to implement different hardware accelerators in ESs. The book pays considerable attention to design methods for FPGA-based FSMs, before the closing section turns to programmable logic controllers widely used in industry. This book will be interesting and useful for students and postgraduates in the area of Computer Science, as well as for designers of embedded systems. In addition, it offers a good point of departure for creating embedded systems for various spheres of human activity.
This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems' nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book's core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (but non-implementable) predictors, is preserved with approximate predictors developed in the book. An applications-driven engineer will find a large number of explicit formulae, which are given throughout the book to assist in the application of the theory to a variety of control problems. A mathematician will find sophisticated new proof techniques, which are developed for the purpose of providing global stability guarantees for the nonlinear infinite-dimensional delay system under feedback laws employing practically implementable approximate predictors. Researchers working on global stabilization problems for time-delay systems will find this monograph to be a helpful summary of the state of the art, while graduate students in the broad field of systems and control will advance their skills in nonlinear control design and the analysis of nonlinear delay systems.
This book includes the original, peer-reviewed research papers from the 2nd International Conference on Electrical Systems, Technology and Information (ICESTI 2015), held in September 2015 at Patra Jasa Resort & Villas Bali, Indonesia. Topics covered include: Mechatronics and Robotics, Circuits and Systems, Power and Energy Systems, Control and Industrial Automation, and Information Theory. It explores emerging technologies and their application in a broad range of engineering disciplines, including communication technologies and smart grids. It examines hybrid intelligent and knowledge-based control, embedded systems, and machine learning. It also presents emerging research and recent application in green energy system and storage. It discusses the role of electrical engineering in biomedical, industrial and mechanical systems, as well as multimedia systems and applications, computer vision and image and signal processing. The primary objective of this series is to provide references for dissemination and discussion of the above topics. This volume is unique in that it includes work related to hybrid intelligent control and its applications. Engineers and researchers as well as teachers from academia and professionals in industry and government will gain valuable insights into interdisciplinary solutions in the field of emerging electrical technologies and its applications.
This book introduces the state-of-the-art research progress of system-level EMC, including theories, design technologies, principles and applications in practice. The engineering design, simulation, prediction, analysis, test, stage control as well as effectiveness evaluation are discussed in detail with extensive project experiences, making the book an essential reference for researchers and industrial engineers.
This book focuses on bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types - those with jumps present either in the right-hand side, or in trajectories or in the arguments of solutions of equations. The results obtained can be applied to various fields, such as neural networks, brain dynamics, mechanical systems, weather phenomena and population dynamics. Developing bifurcation theory for various types of differential equations, the book is pioneering in the field. It presents the latest results and provides a practical guide to applying the theory to differential equations with various types of discontinuity. Moreover, it offers new ways to analyze nonautonomous bifurcation scenarios in these equations. As such, it shows undergraduate and graduate students how bifurcation theory can be developed not only for discrete and continuous systems, but also for those that combine these systems in very different ways. At the same time, it offers specialists several powerful instruments developed for the theory of discontinuous dynamical systems with variable moments of impact, differential equations with piecewise constant arguments of generalized type and Filippov systems.
This book explores various intelligent algorithms including evolutionary algorithms, swarm intelligence-based algorithms for analysis and control of dynamical systems. Both single-input-single-output (SISO) and multi-input-multi-output (MIMO) systems are explored for analysis and control purposes. The applications of intelligent algorithm vary from approximation to optimal control design. The applications of intelligent algorithms not only improve understanding of a dynamical system but also enhance the control efficacy. The intelligent algorithms are now readily applied to all fields of control including linear control, nonlinear control, digital control, optimal control, etc. The book also discusses the main benefits attained due to the application of algorithms to analyze and control.
A smart building is the state-of-art in building with features that facilitates informed decision making based on the available data through smart metering and IoT sensors. This set provides useful information for developing smart buildings including significant improvement of energy efficiency, implementation of operational improvements and targeting sustainable environment to create an effective customer experience. It includes case studies from industrial results which provide cost effective solutions and integrates the digital SCADE solution. Describes complete implication of smart buildings via industrial, commercial and community platforms Systematically defines energy-efficient buildings, employing power consumption optimization techniques with inclusion of renewable energy sources Covers data centre and cyber security with excellent data storage features for smart buildings Includes systematic and detailed strategies for building air conditioning and lighting Details smart building security propulsion. This set is aimed at graduate students, researchers and professionals in building systems, architectural, and electrical engineering.
This book develops original results regarding singular dynamic systems following two different paths. The first consists of generalizing results from classical state-space cases to linear descriptor systems, such as dilated linear matrix inequality (LMI) characterizations for descriptor systems and performance control under regulation constraints. The second is a new path, which considers descriptor systems as a powerful tool for conceiving new control laws, understanding and deciphering some controller's architecture and even homogenizing different-existing-ways of obtaining some new and/or known results for state-space systems. The book also highlights the comprehensive control problem for descriptor systems as an example of using the descriptor framework in order to transform a non-standard control problem into a classic stabilization control problem. In another section, an accurate solution is derived for the sensitivity constrained linear optimal control also using the descriptor framework. The book is intended for graduate and postgraduate students, as well as researchers in the field of systems and control theory.
China Satellite Navigation Conference (CSNC 2021) Proceedings presents selected research papers from CSNC 2021 held during 22nd-25th May, 2021 in Nanchang, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2021 which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Featuring selected contributions from the 2nd International Conference on Mechatronics and Robotics Engineering, held in Nice, France, February 18-19, 2016, this book introduces recent advances and state-of-the-art technologies in the field of advanced intelligent manufacturing. This systematic and carefully detailed collection provides a valuable reference source for mechanical engineering researchers who want to learn about the latest developments in advanced manufacturing and automation, readers from industry seeking potential solutions for their own applications, and those involved in the robotics and mechatronics industry.
The topics addressed in this book cover the whole range of kinematic analysis, synthesis and design and consider robotic systems possessing serial, parallel and cable driven mechanisms. The robotic systems range from being less than fully mobile to kinematically redundant to over constrained. The fifty-six contributions report the latest results in robot kinematics with emphasis on emerging areas such as design and control of humanoids or humanoid subsystems. The book is of interest to researchers wanting to bring their knowledge up to date regarding modern topics in one of the basic disciplines in robotics, which relates to the essential property of robots, the motion of mechanisms.
This book offers a timely overview of fractional calculus applications, with a special emphasis on fractional derivatives with Mittag-Leffler kernel. The different contributions, written by applied mathematicians, physicists and engineers, offers a snapshot of recent research in the field, highlighting the current methodological frameworks together with applications in different fields of science and engineering, such as chemistry, mechanics, epidemiology and more. It is intended as a timely guide and source of inspiration for graduate students and researchers in the above-mentioned areas.
This book presents basic research on delta operator systems (DOS) with actuator saturation. It proposes null controllable regions of delta operator systems, introduces the enlarging of the domain of attraction and analyzes the performance of DOSs subject to actuator saturation. It also discusses the domain of attraction on different systems in delta domain, and investigates the applications in complicated systems using delta operator approaches.
This book investigates new important applications of the Spatial Grasp Technology (SGT) allowing us to effectively simulate and manage large distributed dynamic systems on semantic and holistic levels. This patented technology, developed for decades and in different countries, is based on a completely different philosophy and model allowing us to directly operate in united distributed physical and virtual spaces and provide system solutions much simpler and more compact than under other approaches. The described applications include basic operations suitable for solving many network-related problems, simulation of such mysterious concept as consciousness so important for the design of advanced intelligent systems, modelling the spread of viruses and distribution of antivirus vaccine, and also implementation of the latest decision-centric and mosaic-based organizational concepts important for modern defence and industrial systems. The described technology version with its Spatial Grasp Language can be implemented even within university environments, with communicating language interpreter copies, potentially numbering millions to billions, easily embedded into any existing systems, including Internet, thus converting the whole world into a powerful symbiotic simulation management engine. The book is oriented on system scientists, application programmers, industry managers, and also university students interested in advanced M.Sc. and Ph.D. projects related to distributed system management.
This book is a simple and didactic account of the developments and practical applications of predictive, adaptive predictive, and optimized adaptive control from a perspective of stability, including the latest methodology of adaptive predictive expert (ADEX) control. ADEX Optimized Adaptive Control Systems is divided into six parts, with exercises and real-time simulations provided for the reader as appropriate. The text begins with the conceptual and intuitive knowledge of the technology and derives the stability conditions to be verified by the driver block and the adaptive mechanism of the optimized adaptive controller to guaranty the desired control performance. The second and third parts present strategic considerations of predictive control and related adaptive systems necessary for the proper design of driver block and adaptive mechanism and thence their technical realization. The authors then proceed to detail the stability theory that supports predictive, adaptive predictive and optimized adaptive control methodologies. Benchmark applications of these methodologies (distillation column and pulp-factory bleaching plant) are treated next with a focus on practical implementation issues. The final part of the book describes ADEX platforms and illustrates their use in the design and implementation of optimized adaptive control systems to three different challenging-to-control industrial processes: waste-water treatment; sulfur recovery; and temperature control of superheated steam in coal-fired power generation. The presentation is completed by a number of appendices containing technical background associated with the main text including a manual for the ADEX COP platform developed by the first author to exploit the capabilities of adaptive predictive control in real plants. ADEX Optimized Adaptive Control Systems provides practicing process control engineers with a multivariable optimal control solution which is adaptive and resistant to perturbation and the effects of noise. Its pedagogical features also facilitate its use as a teaching tool for formal university and Internet-based open-education-type graduate courses in practical optimal adaptive control and for self-study.
This book provides a review of the state-of-the-art of agricultural robotics in different aspects of PA, the goals, and the gaps. The book introduces the area of Agricultural Robotics for Precision Agriculture (PA) specifically the conditions and limitations for implementing robots in this field and presents the concepts, principles, required abilities, components, characteristics and performance measures, conditions, and rules for robots in PA. |
![]() ![]() You may like...
Progress in Photon Science - Recent…
Kaoru Yamanouchi, Sergey Tunik, …
Hardcover
R4,205
Discovery Miles 42 050
Symmetries, Differential Equations and…
Victor G. Kac, Peter J. Olver, …
Hardcover
R4,354
Discovery Miles 43 540
The Physics of Inertial Fusion…
Stefano Atzeni, Jurgen Meyer-Ter-Vehn
Hardcover
R10,787
Discovery Miles 107 870
Geometric Partial Differential Equations…
Andrea Bonito, Ricardo H. Nochetto
Hardcover
|