![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.
This book, along with its companion volume, Nonlinear Dynamics New Directions: Models and Applications, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: * Presents a rigorous treatment of fluctuations in dynamical systems and explores a range of topics in fractal analysis, among other fundamental topics * Features recent developments on large deviations for higher-dimensional maps, a study of measures resisting multifractal analysis and a overview of complex Kleninan groups * Includes thorough review of recent findings that emphasize new development prospects
In his rich and varied career as a mathematician, computer scientist, and educator, Jacob T. Schwartz wrote seminal works in analysis, mathematical economics, programming languages, algorithmics, and computational geometry. In this volume of essays, his friends, students, and collaborators at the Courant Institute of Mathematical Sciences present recent results in some of the fields that Schwartz explored: quantum theory, the theory and practice of programming, program correctness and decision procedures, dextrous manipulation in Robotics, motion planning, and genomics. In addition to presenting recent results in these fields, these essays illuminate the astonishingly productive trajectory of a brilliant and original scientist and thinker.
An autonomous sailboat robot is a boat that only uses the wind on
its sail as propelling force, without remote control or human
assistance to achieve its mission. This involves autonomy in energy
(using batteries, solar panels, turbines...), sensor data
processing (compass, GPS, wind sensor...), actuators control
(rudder and sail angle control...) and decision making (embedded
computer with adequate algorithms). Although robotic sailing is a
relatively new field of research, several applications exist for
this type of robots: oceanographic and hydrographic research,
maritime environment monitoring, meteorology, harbor safety,
assistance and rescue in dangerous areas...
The book written by Dr. Radu B. Rusu presents a detailed description of 3D Semantic Mapping in the context of mobile robot manipulation. As autonomous robotic platforms get more sophisticated manipulation capabilities, they also need more expressive and comprehensive environment models that include the objects present in the world, together with their position, form, and other semantic aspects, as well as interpretations of these objects with respect to the robot tasks. The book proposes novel 3D feature representations called Point Feature Histograms (PFH), as well as a frameworks for the acquisition and processing of Semantic 3D Object Maps with contributions to robust registration, fast segmentation into regions, and reliable object detection, categorization, and reconstruction. These contributions have been fully implemented and empirically evaluated on different robotic systems, and have been the original kernel to the widely successful open-source project the Point Cloud Library (PCL) -- see http: //pointclouds.org.
This volume deals with topics such as mechanism and machine design, biomechanics and medical engineering, gears, mechanical transmissions, mechatronics, computational and experimental methods, dynamics of mechanisms and machines, micromechanisms and microactuators, and history of mechanisms and transmissions. Following MeTrApp 2011 and 2013, held under the auspices of the IFToMM, these proceedings of the 3rd Conference on Mechanisms, Transmissions and Applications offer a platform for original research presentations for researchers, scientists, industry experts and students in the fields of mechanisms and transmissions with special emphasis on industrial applications in order to stimulate the exchange of new and innovative ideas.
Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC'15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory."
Energy exchange is a major foundation of the dynamics of physical systems, and, hence, in the study of complex multi-domain systems, methodologies that explicitly describe the topology of energy exchanges are instrumental in structuring the modeling and the computation of the system's dynamics and its control. This book is the outcome of the European Project "Geoplex" (FP5 IST-2001-34166) that studied and extended such system modeling and control methodologies. This unique book starts from the basic concept of port-based modeling, and extends it to port-Hamiltonian systems. This generic paradigm is applied to various physical domains, showing its power and unifying flexibility for real multi-domain systems.
This research monograph presents selected areas of applications in the field of control systems engineering using computational intelligence methodologies. A number of applications and case studies are introduced. These methodologies are increasing used in many applications of our daily lives. Approaches include, fuzzy-neural multi model for decentralized identification, model predictive control based on time dependent recurrent neural network development of cognitive systems, developments in the field of Intelligent Multiple Models based Adaptive Switching Control, designing military training simulators using modelling, simulation, and analysis for operational analyses and training, methods for modelling of systems based on the application of Gaussian processes, computational intelligence techniques for process control and image segmentation technique based on modified particle swarm optimized-fuzzy entropy.
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of "switched electronic systems". Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.
Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 2012 at the Massachusetts Institute of Technology. The 37 papers included in this book cover a broad range of topics, from fundamental theoretical issues in robot motion planning, control, and perception, to novel applications.
Model-Based Control will be a collection of state-of-the-art contributions in the field of modelling, identification, robust control and optimization of dynamical systems, with particular attention to the application domains of motion control systems (high-accuracy positioning systems) and large scale industrial process control systems.The book will be directed to academic and industrial people involved in research in systems and control, industrial process control and mechatronics.
This authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked control and multi-agent systems. The authors systematically develop an operator-theoretic approach that departs from both the traditional algebraic approach and the currently pervasive LMI solution methods. This approach is built on the classical small-gain theorem, which enables the author to draw upon powerful tools and techniques from robust control theory. The book contains motivating examples and presents mathematical key facts that are required in the subsequent sections. The target audience primarily comprises researchers and professionals in the field of control theory, but the book may also be beneficial for graduate students alike.
PIC Microcontrollers are a favorite in industry and with hobbyists.
These microcontrollers are versatile, simple, and low cost making
them perfect for many different applications. The 8-bit PIC is
widely used in consumer electronic goods, office automation, and
personal projects. Author, Dogan Ibrahim, author of several PIC
books has now written a book using the PIC18 family of
microcontrollers to create projects with SD cards.
This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challenges of future neural network research. Over the past decades, the neural network community has witnessed significant breakthroughs and developments from all aspects of neural network research, including theoretical foundations, architectures, and network organizations, modeling and simulation, empirical studies, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, has provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large scale, and networked brain-like intelligent systems. This long-term goals can only be achieved with the continuous efforts from the community to seriously investigate various issues on neural networks and related topics.
After two succesful conferences held in Innsbruck (Prof. Manfred Husty) in 2006 and Cassino in 2008 (Prof Marco Ceccarelli) with the participation of the most important well-known scientists from the European Mechanism Science Community, a further conference was held in Cluj Napoca, Romania, in 2010 (Prof. Doina Pisla) to discuss new developments in the field. This book presents the most recent research advances in Mechanism Science with different applications. Amongst the topics treated are papers on Theoretical kinematics, Computational kinematics, Mechanism design, Mechanical transmissions, Linkages and manipulators, Mechanisms for biomechanics, Micro-mechanisms, Experimental mechanics, Mechanics of robots, Dynamics of multi-body systems, Dynamics of machinery, Control issues of mechanical systems, Novel designs, History of mechanism science etc.
Compiling the expertise of nine pioneers of the field, Magnetic Bearings - Theory, Design, and Application to Rotating Machinery offers an encyclopedic study of this rapidly emerging field with a balanced blend of commercial and academic perspectives. Every element of the technology is examined in detail, beginning at the component level and proceeding through a thorough exposition of the design and performance of these systems. The book is organized in a logical fashion, starting with an overview of the technology and a survey of the range of applications. A background chapter then explains the central concepts of active magnetic bearings while avoiding a morass of technical details. From here, the reader continues to a meticulous, state-of-the-art exposition of the component technologies and the manner in which they are assembled to form the AMB/rotor system. These system models and performance objectives are then tied together through extensive discussions of control methods for both rigid and flexible rotors, including consideration of the problem of system dynamics identification. Supporting this, the issues of system reliability and fault management are discussed from several useful and complementary perspectives. At the end of the book, numerous special concepts and systems, including micro-scale bearings, self-bearing motors, and self-sensing bearings, are put forth as promising directions for new research and development. Newcomers to the field will find the material highly accessible while veteran practitioners will be impressed by the level of technical detail that emerges from a combination of sophisticated analysis and insights gleaned from many collective years of practical experience. An exhaustive, self-contained text on active magnetic bearing technology, this book should be a core reference for anyone seeking to understand or develop systems using magnetic bearings.
Unmanned marine vehicles (UMVs) is a collective term used to describe autonomous underwater vehicles, remotely operated vehicles, semi-submersibles, and unmanned surface craft. Considerable interest has been shown in UMVs by the military, civilian and scientific communities due to their ability to undertake designated missions whilst either operating autonomously and/or on co-operation with other types of vehicle. Increasing importance is also being placed on the design and development of such vehicles as they are capable of providing cost effective solutions to a number of littoral, coastal and offshore problems. This book draws attention to the advanced technology which is evolving to meet the challenges being posed in this exciting and growing field of study. |
You may like...
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
|