![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book focuses on open issues of new intelligent control paradigms and their usage. Industry 4.0 requires new approaches in the context of secure connection, control, and maintenance of robotic systems, as well as enhancing their interaction with humans. The book presents recent advances in industrial robotics, and robotic design and modeling for various domains, and discusses the methodological foundations of the collaborative robotics concept as a breakthrough in modern industrial technologies. It also describes the implementation of multi-agent models, programs and methods that could be used in future processes for control, condition assessment, diagnostics, prognostication, and proactive maintenance. Further, the book addresses the issue of ensuring the space robotics systems and proposes reliable novel solutions. The authors also illustrate the integration of deep-learning methods and mathematical modeling based on examples of successful robotic systems in various countries, and analyze the connections between robotic modeling and design from the positions of new industrial challenges. The book is intended for practitioners and enterprise representatives, as well as scientists and Ph.D. and Master's students pursuing research in the area of cyber-physical system development and implementation in various domains.
This book puts forward the concept of a virtual equivalent system (VES) based on theoretical analysis and simulation results. The new concept will facilitate the development of a unified framework for analyzing the stability and convergence of self-tuning control (STC) systems, and potentially, of all adaptive control systems. The book then shows that a time-varying STC system can be converted into a time-invariant system using a certain nonlinear compensation signal, which reduces the complexity and difficulty of stability and convergence analysis. In closing, the VES concept and methodology are used to assess the stability of multiple model adaptive control (MMAC) systems and T-S model-based fuzzy control systems.
This monograph presents theoretical methods involving the Hamilton-Jacobi-Bellman formalism in conjunction with set-valued techniques of nonlinear analysis to solve significant problems in dynamics and control. The emphasis is on issues of reachability, feedback control synthesis under complex state constraints, hard or double bounds on controls, and performance in finite time. Guaranteed state estimation, output feedback control, and hybrid dynamics are also discussed. Although the focus is on systems with linear structure, the authors indicate how to apply each approach to nonlinear and nonconvex systems. The main theoretical results lead to computational schemes based on extensions of ellipsoidal calculus that provide complete solutions to the problems. These computational schemes in turn yield software tools that can be applied effectively to high-dimensional systems. Ellipsoidal Techniques for Problems of Dynamics and Control: Theory and Computation will interest graduate and senior undergraduate students, as well as researchers and practitioners interested in control theory, its applications, and its computational realizations.
Hydroelectric power stations are a major source of electricity around the world; understanding their dynamics is crucial to achieving good performance. The electrical power generated is normally controlled by individual feedback loops on each unit. The reference input to the power loop is the grid frequency deviation from its set point, thus structuring an external frequency control loop. The book discusses practical and well-documented cases of modelling and controlling hydropower stations, focused on a pumped storage scheme based in Dinorwig, North Wales. These accounts are valuable to specialist control engineers who are working in this industry. In addition, the theoretical treatment of modern and classic controllers will be useful for graduate and final year undergraduate engineering students. This book reviews SISO and MIMO models, which cover the linear and nonlinear characteristics of pumped storage hydroelectric power stations. The most important dynamic features are discussed. The verification of these models by hardware in the loop simulation is described. To show how the performance of a pumped storage hydroelectric power station can be improved, classical and modern controllers are applied to simulated models of Dinorwig power plant, that include PID, Fuzzy approximation, Feed-Forward and Model Based Predictive Control with linear and hybrid prediction models.
This book contains research contributions from leading global scholars in nature-inspired computing. It includes comprehensive coverage of each respective topic, while also highlighting recent and future trends. The contributions provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application. This book has focus on the current researches while highlighting the empirical results along with theoretical concepts to provide a comprehensive reference for students, researchers, scholars, professionals and practitioners in the field of Advanced Artificial Intelligence, Nature-Inspired Algorithms and Soft Computing.
This book introduces basic computing skills designed for industry professionals without a strong computer science background. Written in an easily accessible manner, and accompanied by a user-friendly website, it serves as a self-study guide to survey data science and data engineering for those who aspire to start a computing career, or expand on their current roles, in areas such as applied statistics, big data, machine learning, data mining, and informatics. The authors draw from their combined experience working at software and social network companies, on big data products at several major online retailers, as well as their experience building big data systems for an AI startup. Spanning from the basic inner workings of a computer to advanced data manipulation techniques, this book opens doors for readers to quickly explore and enhance their computing knowledge. Computing with Data comprises a wide range of computational topics essential for data scientists, analysts, and engineers, providing them with the necessary tools to be successful in any role that involves computing with data. The introduction is self-contained, and chapters progress from basic hardware concepts to operating systems, programming languages, graphing and processing data, testing and programming tools, big data frameworks, and cloud computing. The book is fashioned with several audiences in mind. Readers without a strong educational background in CS--or those who need a refresher--will find the chapters on hardware, operating systems, and programming languages particularly useful. Readers with a strong educational background in CS, but without significant industry background, will find the following chapters especially beneficial: learning R, testing, programming, visualizing and processing data in Python and R, system design for big data, data stores, and software craftsmanship.
This book presents selected papers from the 9th International Workshop of Advanced Manufacturing and Automation (IWAMA 2019), held in Plymouth, UK, on November 21-22, 2019. Discussing topics such as novel techniques for manufacturing and automation in Industry 4.0 and smart factories, which are vital for maintaining and improving economic development and quality of life, it offers researchers and industrial engineers insights into implementing the concepts and theories of Industry 4.0, in order to effectively respond to the challenges posed by the 4th industrial revolution and smart factories.
This book mostly results from a selection of papers presented during the 11th IFAC (International Federation of Automatic Control) Workshop on Time-Delay Systems, which took place in Grenoble, France, February 4 - 6, 2013. During this event, 37 papers were presented. Taking into account the reviewers' evaluation and the papers' presentation the best papers have been selected and collected into the present volume. The authors of 13 selected papers were invited to participate to this book and provided a more detailed and improved version of the conference paper. To enrich the book, three more chapters have been included from specialists on time-delay systems who presented their work during the 52nd IEEE Conference on Decision and Control, which held in December 10 - 13, 2013, at Florence, Italy. The content of the book is divided into four main parts as follows: Modeling, Stability analysis, Stabilization and control, and Input-delay systems. Focusing on various topics of time-delay systems, this book will be interesting for researchers and graduate students working on control and system theory.
This volume collects recent advances in nonlinear delay systems, with an emphasis on constructive generalized Lyapunov and predictive approaches that certify stability properties. The book is written by experts in the field and includes two chapters by Miroslav Krstic, to whom this volume is dedicated. This volume is suitable for all researchers in mathematics and engineering who deal with nonlinear delay control problems and students who would like to understand the current state of the art in the control of nonlinear delay systems.
This book provides an insight on the importance that Internet of Vehicles (IoV) solutions can have in taking care of vehicular safety through internetworking and automation. Key features of the book are the inclusion and elaboration of recent and emerging developments in various specializations of intelligent transportation systems and their solutions by incorporating IoT (Internet of Things) and IoV. This book presents to its readers useful IoV applications and architectures that cater to their improved driving requirements and lead towards autonomous driving. The application domains have a large range in which vehicular networking, communication technology, sensor devices, computing materials and devices, IoT communication, vehicular and on-road safety, data security and other topics are included.
The book reports on the author's original work to address the use of today's state-of-the-art smartphones for human physical activity recognition. By exploiting the sensing, computing and communication capabilities currently available in these devices, the author developed a novel smartphone-based activity-recognition system, which takes into consideration all aspects of online human activity recognition, from experimental data collection, to machine learning algorithms and hardware implementation. The book also discusses and describes solutions to some of the challenges that arose during the development of this approach, such as real-time operation, high accuracy, low battery consumption and unobtrusiveness. It clearly shows that it is possible to perform real-time recognition of activities with high accuracy using current smartphone technologies. As well as a detailed description of the methods, this book also provides readers with a comprehensive review of the fundamental concepts in human activity recognition. It also gives an accurate analysis of the most influential works in the field and discusses them in detail. This thesis was supervised by both the Universitat Politecnica de Catalunya (primary institution) and University of Genoa (secondary institution) as part of the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments.
Traditionally, process design and control system design are performed sequentially. It is only recently displayed that a simultaneous approach to the design and control leads to significant economic benefits and improved dynamic performance during plant operation.
This book systematizes recent research work on variable-structure control. It is self-contained, presenting necessary mathematical preliminaries so that the theoretical developments can be easily understood by a broad readership. The text begins with an introduction to the fundamental ideas of variable-structure control pertinent to their application in complex nonlinear systems. In the core of the book, the authors lay out an approach, suitable for a large class of systems, that deals with system uncertainties with nonlinear bounds. Its treatment of complex systems in which limited measurement information is available makes the results developed convenient to implement. Various case-study applications are described, from aerospace, through power systems to river pollution control with supporting simulations to aid the transition from mathematical theory to engineering practicalities. The book addresses systems with nonlinearities, time delays and interconnections and considers issues such as stabilization, observer design, and fault detection and isolation. It makes extensive use of numerical and practical examples to render its ideas more readily absorbed. Variable-Structure Control of Complex Systems will be of interest to academic researchers studying control theory and its application in nonlinear, time-delayed an modular large-scale systems; the robustness of its approach will also be attractive to control engineers working in industries associate with aerospace, electrical and mechanical engineering.
This book discusses human-machine interactions, specifically focusing on making them as natural as human-human interaction. It is based on the premise that to get the right connect between human and machines, it is essential to understand not only the behavior of the person interacting with the machine, but also the limitations of the technology. Firstly, the authors review the evolution of language as a spontaneous, natural phenomenon in the overall scheme of the evolutionary development of living beings. They then go on to examine the possible approaches to understanding and representing the meaning and the common aspects of human-human and human-machine interactions, and introduce the keyconcept-keyword (also called minimal parsing) approach as a convenient and realistic way to implement usable human-machine interface (HMI) systems. For researchers looking for practical approaches, way beyond the realms of theory, this book is a must read.
This book focuses on the design of efficient & dynamic methods to allocate divisible resources under various auction mechanisms, discussing their applications in power & microgrid systems and the V2G & EV charging coordination problems in smart grids. It describes the design of dynamic methods for single-sided and double-sided auction games and presents a number of simulation cases verifying the performances of the proposed algorithms in terms of efficiency, convergence and computational complexity. Further, it explores the performances of certain auction mechanisms in a hierarchical structure and with large-scale agents, as well as the auction mechanisms for the efficient allocation of multi-type resources. Lastly, it generalizes the main and demonstrates their application in smart grids. This book is a valuable resource for researchers, engineers, and graduate students in the fields of optimization, game theory, auction mechanisms and smart grids interested in designing dynamic auction mechanisms to implement optimal allocation of divisible resources, especially electricity and other types of energy in smart grids.
As the sister book to "Introduction to Multicopter Design and Control," published by Springer in 2017, this book focuses on using a practical process to help readers to deepen their understanding of multicopter design and control. Novel tools with tutorials on multicopters are presented, which can help readers move from theory to practice. Experiments presented in this book employ: (1) The most widely-used flight platform - multicopters - as a flight platform; (2) The most widely-used flight pilot hardware - Pixhawk - as a control platform; and (3) One of the most widely-used programming languages in the field of control engi-neering - MATLAB + Simulink - as a programming language. Based on the current advanced development concept Model-Based Design (MBD)process, the three aspects mentioned above are closely linked. Each experiment is implemented in MATLAB and Simulink, and the numerical simula-tion test is carried out on a built simulation platform. Readers can upload the controller to the Pixhawk autopilot using automatic code generation technology and form a closed loop with a given real-time simulator for Hardware-In-the-Loop (HIL) testing. After that, the actual flight with the Pixhawk autopilot can be performed. This is by far the most complete and clear guide to modern drone fundamentals I've seen.It covers every element of these advanced aerial robots and walks through examples and tutorials based on the industry's leading open-source software and tools. Read this book, and you'll be well prepared to work at the leading edge of this exciting new industry. Chris Anderson, CEO 3DR and Chairman, the Linux Foundation's Dronecode Project The development of a multicopter and its applications is very challenging in the robotics area due to the multidomain knowledge involved. This book systematically addresses the design, simulation and implementation of multicopters with the industrial leading workflow - Model-Based Design, commonly used in the automotive and aero-defense industries. With this book, researchers and engineers can seamlessly apply the concepts, workflows, and tools in other engineering areas, especially robot design and robotics ap-plication development. Dr. Yanliang Zhang, Founder of Weston Robot, EX-product Manager of Robotics System Toolbox at the MathWorks
This graduate-level textbook elucidates low-risk and fail-safe systems in mathematical detail. It addresses, in particular, problems where mission-critical performance is paramount, such as in aircraft, missiles, nuclear reactors and weapons, submarines, and many other types of systems where "failure" can result in overwhelming loss of life and property. The book is divided into four parts: Fundamentals, Electronics, Software, and Dangerous Goods. The first part on Fundamentals addresses general concepts of system safety engineering that are applicable to any type of system. The second part, Electronics, addresses the detection and correction of electronic hazards. In particular, the Bent Pin Problem, Sneak Circuit Problem, and related electrical problems are discussed with mathematical precision. The third part on Software addresses predicting software failure rates as well as detecting and correcting deep software logical flaws (called defects). The fourth part on Dangerous Goods presents solutions to three typical industrial chemical problems faced by the system safety engineer during the design, storage, and disposal phases of a dangerous goods' life cycle.
The proceedings collect the latest research trends, methods and experimental results in the field of electrical and information technologies for rail transportation. The topics cover intelligent computing, information processing, communication technology, automatic control, and their applications in rail transportation etc. The proceedings can be a valuable reference work for researchers and graduate students working in rail transportation, electrical engineering and information technologies.
Praise for Previous Volumes
Gathering presentations to the First International Conference on
This book explores and analyzes emerging innovations within today's most cutting-edge science and technology (S&T) areas, which are cited as carrying the potential to revolutionize governmental structures, economies, and international security. Some have argued that such technologies will yield doomsday scenarios and that military applications of such technologies have even greater potential than nuclear weapons to radically change the balance of power. As the United States looks to the future - whether dominated by extremist groups co-opting advanced weapons in the world of globalized non-state actors or states engaged in persistent regional conflicts in areas of strategic interest - new adversaries and new science and technology will emerge. Choices made today that affect science and technology will impact how ably the US can and will respond. Chapters within the book look at the changing strategic environment in which security operations are planned and conducted; how these impact science and technology policy choices made today; and predictions of how science and technology may play a beneficial or deleterious role in the future. Some game changing technologies have received global attention, while others may be less well known; the new technologies discussed within this proposal, as well as future discoveries, may significantly alter military capabilities and may generate new threats against military and civilian sectors.
Human-in-the-loop Learning and Control for Robot Teleoperation presents recent, research progress on teleoperation and robots, including human-robot interaction, learning and control for teleoperation with many extensions on intelligent learning techniques. The book integrates cutting-edge research on learning and control algorithms of robot teleoperation, neural motor learning control, wave variable enhancement, EMG-based teleoperation control, and other key aspects related to robot technology, presenting implementation tactics, adequate application examples and illustrative interpretations. Robots have been used in various industrial processes to reduce labor costs and improve work efficiency. However, most robots are only designed to work on repetitive and fixed tasks, leaving a gap with the human desired manufacturing effect.
Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB(r) programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and referencefor graduate and advanced undergraduatestudents, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance." |
![]() ![]() You may like...
Mechatronic Components - Roadmap to…
Emin Faruk Kececi
Paperback
Advanced Methods and Deep Learning in…
E.R. Davies, Matthew Turk
Paperback
R2,664
Discovery Miles 26 640
Design and Control Advances in Robotics
Mohamed Arezk Mellal
Hardcover
R8,359
Discovery Miles 83 590
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R4,044
Discovery Miles 40 440
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,328
Discovery Miles 33 280
|