![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Precision Nanometrology describes the new field of precision nanometrology, which plays an important part in nanoscale manufacturing of semiconductors, optical elements, precision parts and similar items. It pays particular attention to the measurement of surface forms of precision workpieces and to stage motions of precision machines. The first half of the book is dedicated to the description of optical sensors for the measurement of angle and displacement, which are fundamental quantities for precision nanometrology. The second half presents a number of scanning-type measuring systems for surface forms and stage motions. The systems discussed include: * error separation algorithms and systems for measurement of straightness and roundness, * the measurement of micro-aspherics, * systems based on scanning probe microscopy, and * scanning image-sensor systems. Precision Nanometrology presents the fundamental and practical technologies of precision nanometrology with a helpful selection of algorithms, instruments and experimental data. It will be beneficial for researchers, engineers and postgraduate students involved in precision engineering, nanotechnology and manufacturing.
Internet of Multimedia Things (IoMT): Techniques and Applications disseminates research efforts in the security and resilience of intelligent data-centric critical systems to support advanced research in this area. Sections cover the background of IoMT Architectures and Technologies, describe the problems that arise in IoMT Computing and protocols, and illustrate the application of IoMT on Industrial applications. The book will be beneficial for engineers, developers, solution designers, architects, system engineers and specialists from professional environments interested in the IoMT to seek appropriate solutions to their specific problems.
A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mechatronic and aerospace design being used to demonstrate the techniques discussed. The author's commercial MATLAB (R)-based environment, available separately from insert URL here, can be used to create simulations showing the results of using the computer-aided control system design ideas characterized in the text. Academic researchers and graduate students studying nonlinear control systems and control engineers dealing with nonlinear plant, particularly mechatronic or aerospace systems will find Computer-aided Nonlinear Control System Design to be of great practical assistance adding to their toolbox of techniques for dealing with system nonlinearities. A basic knowledge of calculus, nonlinear analysis and software engineering will enable the reader to get the best from this book.
This book contains the selected papers of the Sixth International Workshop on Medical and Service Robots (MESROB 2018), held in Cassino, Italy, in 2018. The main topics of the workshop include: design of medical devices, kinematics and dynamics for medical robotics, exoskeletons and prostheses, anthropomorphic hands , therapeutic robots and rehabilitation, cognitive robots, humanoid and service robots, assistive robots and elderly assistance, surgical robots, human-robot interfaces, haptic devices, and medical treatments.
Suitable either as a reference for practising engineers or as a text for a graduate course in adaptive control systems, this is a self-contained compendium of readily implementable adaptive control algorithms. These algorithms have been developed and applied by the authors for over fifteen years to a wide variety of engineering problems including flexible structure control, blood pressure control, and robotics. As such, they are suitable for a wide variety of multiple input-output control systems with uncertainty and external disturbances. The text is intended to enable anyone with knowledge of basic linear multivariable systems to adapt the algorithms to problems in a wide variety of disciplines. Thus, in addition to developing the theoretical details of the algorithms presented, the text gives considerable emphasis to designing algorithms and to representative applications in flight control, flexible structure control, robotics, and drug-infusion control. This second edition makes good use of MATLAB programs for the illustrative examples; these programs are described in the text and can be obtained from the MathWorks file server.
The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.
The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ..., new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. The water and wastewater industry has undergone many changes in recent years. Of particular importance has been a renewed emphasis on improving resource management with tighter regulatory controls setting new targets on pricing, industry efficiency and loss reduction for both water and wastewater with more stringent environmental discharge conditions for wastewater. Meantime, the demand for water and wastewater services grows as the population increases and wishes for improved living conditions involving, among other items, domestic appliances that use water. Consequently, the installed infrastructure of the industry has to be continuously upgraded and extended, and employed more effectively to accommodate the new demands, both in throughput and in meeting the new regulatory conditions. Investment in fixed infrastructure is capital-intensive and slow to come on-stream. One outcome of these changes and demands is that the industry is examining the potential benefits of, and in many cases using, more advanced control systems.
Fault Detection and Fault-tolerant Control Using Sliding Modes is the first text dedicated to showing the latest developments in the use of sliding-mode concepts for fault detection and isolation (FDI) and fault-tolerant control in dynamical engineering systems. It begins with an introduction to the basic concepts of sliding modes to provide a background to the field. This is followed by chapters that describe the use and design of sliding-mode observers for FDI using robust fault reconstruction. The development of a class of sliding-mode observers is described from first principles through to the latest schemes that circumvent minimum-phase and relative-degree conditions. Recent developments have shown that the field of fault tolerant control is a natural application of the well-known robustness properties of sliding-mode control. A family of sliding-mode control designs incorporating control allocation, which can deal with actuator failures directly by exploiting redundancy, is presented. Various realistic case studies, specifically highlighting aircraft systems and including results from the implementation of these designs on a motion flight simulator, are described. A reference and guide for researchers in fault detection and fault-tolerant control, this book will also be of interest to graduate students working with nonlinear systems and with sliding modes in particular. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
The Proportional-Integral-Derivative (PID) controller operates the majority of modern control systems and has applications in many industries; thus any improvement in its design methodology has the potential to have a significant engineering and economic impact. Despite the existence of numerous methods for setting the parameters of PID controllers, the stability analysis of time-delay systems that use PID controllers remains extremely difficult and unclear, and there are very few existing results on PID controller synthesis.Filling a gap in the literature, this book is a presentation of recent results in the field of PID controllers, including their design, analysis, and synthesis. The focus is on linear time-invariant plants that may contain a time-delay in the feedback loop-a setting that captures many real-world practical and industrial situations. Emphasis is placed on the efficient computation of the entire set of PID controllers achieving stability and various performance specifications, which is important for the development of future software design packages, as well as further capabilities such as adaptive PID design and online implementation.
This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians.
Identifying the input-output relationship of a system or discovering the evolutionary law of a signal on the basis of observation data, and applying the constructed mathematical model to predicting, controlling or extracting other useful information constitute a problem that has been drawing a lot of attention from engineering and gaining more and more importance in econo metrics, biology, environmental science and other related areas. Over the last 30-odd years, research on this problem has rapidly developed in various areas under different terms, such as time series analysis, signal processing and system identification. Since the randomness almost always exists in real systems and in observation data, and since the random process is sometimes used to model the uncertainty in systems, it is reasonable to consider the object as a stochastic system. In some applications identification can be carried out off line, but in other cases this is impossible, for example, when the structure or the parameter of the system depends on the sample, or when the system is time-varying. In these cases we have to identify the system on line and to adjust the control in accordance with the model which is supposed to be approaching the true system during the process of identification. This is why there has been an increasing interest in identification and adaptive control for stochastic systems from both theorists and practitioners."
"Control Performance Management in Industrial Automation "provides a coherent and self-contained treatment of a group of methods and applications of burgeoning importance to the detection and solution of problems with control loops that are vital in maintaining product quality, operational safety, and efficiency of material and energy consumption in the process industries. The monograph deals with all aspects of control performance management (CPM), from controller assessment (minimum-variance-control-based and advanced methods), to detection and diagnosis of control loop problems (process non-linearities, oscillations, actuator faults), to the improvement of control performance (maintenance, re-design of loop components, automatic controller re-tuning). It provides a contribution towards the development and application of completely self-contained and automatic methodologies in the field. Moreover, within this work, many CPM tools have been developed that goes far beyond available CPM packages. "Control Performance Management in Industrial Automation" . presents a comprehensive review of control performance assessment methods; . develops methods and procedures for the detection and diagnosis of the root-causes of poor performance in complex control loops; . covers important issues that arise when applying these assessment and diagnosis methods; . recommends new approaches and techniques for the optimization of control loop performance based on the results of the control performance stage; and . offers illustrative examples and industrial case studies drawn from chemicals, building, mining, pulp and paper, mineral and metal processing industries. This book will be of interest to academic and industrial staff working on control systems design, maintenance or optimisation in all process industries."
The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.
This book presents theory and latest application work in Bond Graph methodology with a focus on: * Hybrid dynamical system models, * Model-based fault diagnosis, model-based fault tolerant control, fault prognosis * and also addresses * Open thermodynamic systems with compressible fluid flow, * Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems - Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in academia as well as practitioners in industry and invites experts in related fields to consider the potential and the state-of-the-art of bond graph modelling.
This book is a collection of some of the papers that were presented during a NATO Advanced Research Workshop (ARW) on "Intelligent Systems: Safety, Reliability and Maintainability Issues" that was held in Kusadasi, Turkey during August 24- 28, 1992. Attendance at this workshop was mainly by invitation only, drawing people internationally representing industry, government and the academic community. Many of the participants were internationally recognized leaders in the topic of the workshop. The purpose of the ARW was to bring together a highly distinguished group of people with the express purpose of debating where the issues of safety, reliability and maintainability place direct and tangible constraints on the development of intelligent systems. As a consequence, one of the major debating points in the ARW was the definition of intelligence, intelligent behaviour and their relation to complex dynamic systems. Two major conclusions evolved from the ARW are: 1. A continued need exists to develop formal, theoretical frameworks for the architecture of such systems, together with a reflection on the concept of intelligence. 2. There is a need to focus greater attention to the role that the human play in controlling intelligent systems. The workshop began by considering the typical features of an intelligent system. The complexity associated with multi-resolutional architectures was then discussed, leading to the identification of a necessity for the use of a combinatorial synthesis/approach. This was followed by a session on human interface issues.
Finite Automata and Application to Cryptography mainly deals with the invertibility theory of finite automata and its application to cryptography. In addition, autonomous finite automata and Latin arrays, which are relative to the canonical form for one-key cryptosystems based on finite automata, are also discussed. Finite automata are regarded as a natural model for ciphers. The Ra Rb transformation method is introduced to deal with the structure problem of such automata; then public key cryptosystems based on finite automata and a canonical form for one-key ciphers implementable by finite automata with bounded-error-propagation and without data expansion are proposed. The book may be used as a reference for computer science and mathematics majors, including seniors and graduate students. Renji Tao is a Professor at the Institute of Software, Chinese Academy of Sciences, Beijing.
This book provides an overview of the current research in the interdisciplinary area of personal assistants (PA) and cognitively inspired systems. It discusses the most relevant topics in this highly diversified domain, like reasoning, health, personalization, robotics, and ethical and social issues. Personal assistants (PA) are a relatively new concept directed at people with cognitive or physical disabilities, and is expanding to include complex platforms such as sensors, actuators, monitoring abilities and decision processes. Designed for a general audience, it is also of interest to undergraduates, graduates and researchers involved with intelligent systems, ambient intelligence or ambient assisted living. The content goes from an introduction of the field (aimed at undergraduates and a general readership) to specific and complex architectures (aimed at graduates and researchers).
Robotics is at the cusp of dramatic transformation. Increasingly complex robots with unprecedented autonomy are finding new applications, from medical surgery, to construction, to home services. Against this background, the algorithmic foundations of robotics are becoming more crucial than ever, in order to build robots that are fast, safe, reliable, and adaptive. Algorithms enable robots to perceive, plan, control, and learn. The design and analysis of robot algorithms raise new fundamental questions that span computer science, electrical engineering, mechanical engineering, and mathematics. These algorithms are also finding applications beyond robotics, for example, in modeling molecular motion and creating digital characters for video games and architectural simulation. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a highly selective meeting of leading researchers in the field of robot algorithms. Since its creation in 1994, it has published some of the field's most important and lasting contributions. This book contains the proceedings of the 9th WAFR, held on December 13-15, 2010 at the National University of Singapore. The 24 papers included in this book span a wide variety of topics from new theoretical insights to novel applications.
The main aim of this symposium was to bring together end-users and control system specialists to evaluate the possibilities for improvement of techniques, design procedures, components and instruments to encourage low cost automation; considering not only economic aspects but also improvements in productivity, reliability, flexibility and ease-of-application. Special emphasis was placed on small and medium sized enterprises. The technical sessions dealt with topics from process automation as well as from manufacturing automation.
This monograph discusses issues related to estimation, control, and motion planning for mobile robots operating in rough terrain, with particular attention to planetary exploration rovers. Rough terrain robotics is becoming increasingly important in space exploration, and industrial applications. However, most current motion planning and control algorithms are not well suited to rough terrain mobility, since they do not consider the physical characteristics of the rover and its environment. Specific addressed topics are: wheel terrain interaction modeling, including terrain parameter estimation and wheel terrain contact angle estimation; rough terrain motion planning; articulated suspension control; and traction control. Simulation and experimental results are presented that show that the desribed algorithms lead to improved mobility for robotic systems in rough terrain.
This book gathers the Proceedings of the 6th International Conference on Robot Intelligence Technology and Applications (RITA 2018). Reflecting the conference's main theme, "Robotics and Machine Intelligence: Building Blocks for Industry 4.0," it features relevant and current research investigations into various aspects of these building blocks. The areas covered include: Instrumentation and Control, Automation, Autonomous Systems, Biomechatronics and Rehabilitation Engineering, Intelligent Systems, Machine Learning, Robotics, Sensors and Actuators, and Machine Vision, as well as Signal and Image Processing. A valuable asset, the book offers researchers and practitioners a timely overview of the latest advances in robot intelligence technology and its applications.
Congestion Control in Data Transmission Networks details the
modeling and control of data traffic in communication networks. It
shows how various networking phenomena can be represented in a
consistent mathematical framework suitable for rigorous formal
analysis. The monograph differentiates between fluid-flow
continuous-time traffic models, discrete-time processes with
constant sampling rates, and sampled-data systems with variable
discretization periods.
The need to adapt to the demands of global supply chains in real-time is of significant importance to the future success of continuous process industries. Amongst such business drivers, it will become critical that process plants are designed to be easily reconfigured as and when necessary. Recent developments in process control have attempted to address this requirement, yet there has not been a systematic effort made on the analysis of the fundamental shortcomings in the modularity of process control systems. A Distributed Coordination Approach to Reconfigurable Process Control presents research that addresses this critical question, via developing a new distributed framework that will enable the building of a process control system that is capable of reconfigurability. This framework views the process as a set of readily-integrated, modular process elements, which operate relatively independently and are each supported by a degree of stand-alone decision-making capability. The rationale and benefits of moving towards the new approach is demonstrated by means of a worked example of a real process plant. A Distributed Coordination Approach to Reconfigurable Process Control will be a useful reference to both academic and industrial practitioners working in the field of design and integration of process control systems. The new architectural dimension presented in this research will also help end-users to gain an understanding of the economic aspects of material flows across their plants, and the ways in which their processes can be integrated across the enterprise.
This collection of twenty-three timely contributions covers a well-selected repertory of topics within the autonomous systems field. The book discusses a range of design, construction, control, and operation problems along with a multiplicity of well-established and novel solutions.
Systems with delays appear frequently in engineering; typical examples of time-delay systems are communication networks, chemical processes and tele-operation systems. The presence of delays makes system analysis and control design much more complicated. During the last decade, we have witnessed significant developments in robust control of time-delay systems. Robust Control of Time-delay Systems presents a systematic and comprehensive treatment for robust (H-infinity) control of such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. This synthesis of the authora (TM)s recent work covers the whole range of robust control of time-delay systems: from controller parameterization and design to controller implementation; from the Nehari and one-block problems to the four-block problem; from theoretical developments to practical issues. The major tools used in this book are similarity transformation, the chain-scattering approach and J-spectral factorization. The idea is, in the words of Albert Einstein, to "make everything as simple as possible, but not simpler." A website associated with the book is a source of MATLABA(R) and SimulinkA(R) material which will assist with simulation and modelling of the material in the text. Robust Control of Time-delay Systems is self-contained and will interest control theorists, researchers and mathematicians working with time-delay systems and engineers looking to design commercial controllers or to use them in plants or communication systems with time delays.Its methodical approach will also be of value to graduates studying either general robust control theory or its particular applications in time-delay systems. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
|