![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book provides an overview of the current research in the interdisciplinary area of personal assistants (PA) and cognitively inspired systems. It discusses the most relevant topics in this highly diversified domain, like reasoning, health, personalization, robotics, and ethical and social issues. Personal assistants (PA) are a relatively new concept directed at people with cognitive or physical disabilities, and is expanding to include complex platforms such as sensors, actuators, monitoring abilities and decision processes. Designed for a general audience, it is also of interest to undergraduates, graduates and researchers involved with intelligent systems, ambient intelligence or ambient assisted living. The content goes from an introduction of the field (aimed at undergraduates and a general readership) to specific and complex architectures (aimed at graduates and researchers).
This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given.
Reviews different machine learning and deep learning techniques with a biomedical perspective Provides the relevant case studies that demonstrate applicability of different AI techniques Explain different kinds of inputs like various image modalities, biomedical signals types, etc. Covers the latest trends of AI-based biomedical domains including IoT, drug discovery, biomechanics, robotics, electronic health records, etc. Discusses the research challenges and opportunities in AI and biomedical domain
Modern methods of filter design and controller design often yield systems of very high order, posing a problem for their implementation. Over the past two decades or so, sophisticated methods have been developed to achieve simplification of filters and controllers. Such methods often come with easy-to-use error bounds, and in the case of controller simplification methods, such error bounds will usually be related to closed-loop properties.This book is the first comprehensive treatment of approximation methods for filters and controllers. It is fully up to date, and it is authored by two leading researchers who have personally contributed to the development of some of the methods. Balanced truncation, Hankel norm reduction, multiplicative reduction, weighted methods and coprime factorization methods are all discussed.The book is amply illustrated with examples, and will equip practising control engineers and graduates for intelligent use of commercial software modules for model and controller reduction.
This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.
Recent advancements in Lyapunov-based design and analysis techniques have applications to a broad class of engineering systems, including mechanical, electrical, robotic, aerospace, and underactuated systems. This book provides a practical yet rigorous development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation. Features include: * Control designs for a broad class of engineering systems * Presentation of adaptive and learning control methods for uncertain nonlinear systems * Experimental testbed descriptions and results that guide the reader toward techniques for further research * Development of necessary mathematical background in each chapter; additional mathematical prerequisites contained in two appendices Intended for readers who have some knowledge of undergraduate systems theory, the book includes a wide range of applications making it suitable for an extensive audience. Graduate students and researchers in control systems, robotics, and applied mathematics, as well as professional engineers will appreciate the work s combination of theoretical underpinnings and current and emerging engineering applications."
The Mobile Ad Hoc Network (MANET) has emerged as the next frontier for wireless communications networking in both the military and commercial arena. "Handbook of Mobile Ad Hoc Networks for Mobility Models" introduces 40 different major mobility models along with numerous associate mobility models to be used in a variety of MANET networking environments in the ground, air, space, and/or under water mobile vehicles and/or handheld devices. These vehicles include cars, armors, ships, under-sea vehicles, manned and unmanned airborne vehicles, spacecrafts and more. This handbook also describes how each mobility pattern affects the MANET performance from physical to application layer; such as throughput capacity, delay, jitter, packet loss and packet delivery ratio, longevity of route, route overhead, reliability, and survivability. Case studies, examples, and exercises are provided throughout the book. "Handbook of Mobile Ad Hoc Networks for Mobility Models" is for advanced-level students and researchers concentrating on electrical engineering and computer science within wireless technology. Industry professionals working in the areas of mobile ad hoc networks, communications engineering, military establishments engaged in communications engineering, equipment manufacturers who are designing radios, mobile wireless routers, wireless local area networks, and mobile ad hoc network equipment will find this book useful as well.
This book collects the lectures given at the NATO Advanced Study Institute From Identijication to Learning held in Villa Olmo, Como, Italy, from August 22 to September 2, 1994. The school was devoted to the themes of Identijication, Adaptation and Learning, as they are currently understood in the Information and Contral engineering community, their development in the last few decades, their inter connections and their applications. These titles describe challenging, exciting and rapidly growing research areas which are of interest both to contral and communication engineers and to statisticians and computer scientists. In accordance with the general goals of the Institute, and notwithstanding the rat her advanced level of the topics discussed, the presentations have been generally kept at a fairly tutorial level. For this reason this book should be valuable to a variety of rearchers and to graduate students interested in the general area of Control, Signals and Information Pracessing. As the goal of the school was to explore a common methodologicalline of reading the issues, the flavor is quite interdisciplinary. We regard this as an original and valuable feature of this book."
This book provides a unified collection of important, recent results for the design of robust controllers for uncertain systems. Most of the results presented are based on H? control theory, or its stochastic counterpart, risk sensitive control theory.Central to the philosophy of the book is the notion of an uncertain system. Uncertain systems are considered using several different uncertainty modeling schemes. These include norm bounded uncertainty, integral quadratic constraint (IQC) uncertainty and a number of stochastic uncertainty descriptions. In particular, the authors examine stochastic uncertain systems in which the uncertainty is outlined by a stochastic version of the IQC uncertainty description.For each class of uncertain systems covered in the book, corresponding robust control problems are defined and solutions discussed.
This monograph puts the reader in touch with a decade s worth of
new developments in the field of fuzzy control specifically those
of the popular Takagi Sugeno (T S) type. New techniques for
stabilizing control analysis and design of arebased on multiple
Lyapunov functions and linear matrix inequalities (LMIs). All the
results are illustrated with numerical examples and figures and a
rich bibliography is provided for further investigation. "Advanced Takagi Sugeno Fuzzy Systems "provides researchers and graduate students interested in fuzzy control systems with further reliable means for maintaining stability and performance even when a sensor and/or actuator malfunctions."
This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques. Keywords: longitudinal slip, visual odometry, slip-compensation control, robust predictive control, trajectory tracking. Related subjects: Robotics Mechanical Engineering Mechanics Computer Science Artificial Intelligence - Applications "
This self-contained monograph describes basic set-theoretic methods for control. It provides a discussion of their links to fundamental problems in Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. The work presents several established and potentially new applications, along with numerical examples and case studies. A key theme is the trade-off between exact (but computationally intensive) and approximate (but conservative) solutions to problems. Mathematical language is kept to the minimum necessary.
This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering.
Mechatronics is the synergistic combination of precision engineering, electronics, photonics and IT engineering. The main research task for mechatronics is development and control of advanced hybrid systems covering all these fields and supported by interdisciplinary studies. This book presents recent state of advances in mechatronics presented on the 7th International Conference Mechatronics 2007, hosted at the Faculty of Mechatronics, Warsaw University of Technology, Poland. The chosen topics of the conference included: Nanotechnology, Automatic Control and Robotics, Biomedical Engineering, Design Manufacturing and Testing of MEMS, Metrology, Photonics, Mechatronic Products. The selected papers give an overview of the state-of-the-art and present new research results and prospects of the future development in this interdisciplinary field of mechatronic systems. This book will provide up-to-date and useful knowledge for researchers and engineers involved in mechatronics and related fields.
This book gives a unified treatment of classical input-output stability theory and recent developments in nonlinear robust and passivity-based control. The synthesis between these areas is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this vantage-ground. The connection between L2-gain and passivity via scattering is detailed.The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasizing the close relations with modeling and control by interconnection. Feedback equivalence to a passive system and resulting stabilization strategies are discussed.The potential of L2-gain techniques in nonlinear control is demonstrated, including a compact treatment of the nonlinear H optimal control problem. This book supplies the reader with a succinct, informative summary of a fundamental and rapidly developing area of nonlinear control theory.
System Modeling and Optimization XX deals with new developments in
the areas of optimization, optimal control and system modeling. The
themes range across various areas of optimization: continuous and
discrete, numerical and analytical, finite and infinite
dimensional, deterministic and stochastic, static and dynamic,
theory and applications, foundations and case studies. Besides some
classical topics, modern areas are also presented in the
contributions, including robust optimization, filter methods,
optimization of power networks, data mining and risk control.
The book discusses the recent research trends in various sub-domains of computing, communication and control. It includes research papers presented at the First International Conference on Emerging Trends in Engineering and Science. Focusing on areas such as optimization techniques, game theory, supply chain, green computing, 5g networks, Internet of Things, social networks, power electronics and robotics, it is a useful resource for academics and researchers alike.
Recently, research in robot kinematics has attracted researchers with different theoretical profiles and backgrounds, such as mechanical and electrica! engineering, computer science, and mathematics. It includes topics and problems that are typical for this area and cannot easily be met elsewhere. As a result, a specialised scientific community has developed concentrating its interest in a broad class of problems in this area and representing a conglomeration of disciplines including mechanics, theory of systems, algebra, and others. Usually, kinematics is referred to as the branch of mechanics which treats motion of a body without regard to the forces and moments that cause it. In robotics, kinematics studies the motion of robots for programming, control and design purposes. It deals with the spatial positions, orientations, velocities and accelerations of the robotic mechanisms and objects to be manipulated in a robot workspace. The objective is to find the most effective mathematical forms for mapping between various types of coordinate systems, methods to minimise the numerical complexity of algorithms for real-time control schemes, and to discover and visualise analytical tools for understanding and evaluation of motion properties ofvarious mechanisms used in a robotic system.
Efficient Dynamic Simulation of Robotic Mechanisms presents computationally efficient algorithms for the dynamic simulation of closed-chain robotic systems. In particular, the simulation of single closed chains and simple closed-chain mechanisms is investigated in detail. Single closed chains are common in many applications, including industrial assembly operations, hazardous remediation, and space exploration. Simple closed-chain mechanisms include such familiar configurations as multiple manipulators moving a common load, dexterous hands, and multi-legged vehicles. The efficient dynamics simulation of these systems is often required for testing an advanced control scheme prior to its implementation, to aid a human operator during remote teleoperation, or to improve system performance. In conjunction with the dynamic simulation algorithms, efficient algorithms are also derived for the computation of the joint space and operational space inertia matrices of a manipulator. The manipulator inertia matrix is a significant component of any robot dynamics formulation and plays an important role in both simulation and control. The efficient computation of the inertia matrix is highly desirable for real-time implementation of robot dynamics algorithms. Several alternate formulations are provided for each inertia matrix. Computational efficiency in the algorithm is achieved by several means, including the development of recursive formulations and the use of efficient spatial transformations and mathematics. All algorithms are derived and presented in a convenient tabular format using a modified form of spatial notation, a six-dimensional vector notation which greatly simplifies the presentation and analysis of multibody dynamics. Basic definitions and fundamental principles required to use and understand this notation are provided. The implementation of the efficient spatial transformations is also discussed in some detail. As a means of evaluating efficiency, the number of scalar operations (multiplications and additions) required for each algorithm is tabulated after its derivation. Specification of the computational complexity of each algorithm in this manner makes comparison with other algorithms both easy and convenient. The algorithms presented in Efficient Dynamic Simulation of Robotic Mechanisms are among the most efficient robot dynamics algorithms available at this time. In addition to computational efficiency, special emphasis is also placed on retaining as much physical insight as possible during algorithm derivation. The algorithms are easy to follow and understand, whether the reader is a robotics novice or a seasoned specialist.
Safety critical and high-integrity systems, such as industrial plants and economic systems can be subject to abrupt changes - for instance due to component or interconnection failure, and sudden environment changes etc. Combining probability and operator theory, Discrete-Time Markov Jump Linear Systems provides a unified and rigorous treatment of recent results for the control theory of discrete jump linear systems, which are used in these areas of application. The book is designed for experts in linear systems with Markov jump parameters, but is also of interest for specialists in stochastic control since it presents stochastic control problems for which an explicit solution is possible - making the book suitable for course use. From the reviews: "This text is very well written...it may prove valuable to those who work in the area, are at home with its mathematics, and are interested in stability of linear systems, optimal control, and filtering." Journal of the American Statistical Association, December 2005
'Et moi ..... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non. The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
System Modeling and Optimization is an indispensable reference for anyone interested in the recent advances in these two disciplines. The book collects, for the first time, selected articles from the 21st and most recent IFIP TC 7 conference in Sophia Antipolis, France. Applied mathematicians and computer scientists can attest to the ever-growing influence of these two subjects. The practical applications of system modeling and optimization can be seen in a number of fields: environmental science, transport and telecommunications, image analysis, free boundary problems, bioscience, and non-cylindrical evolution control, to name just a few. New developments in each of these fields have contributed to a more complex understanding of both system modeling and optimization. Editors John Cagnol and Jean-Paul Zolesio, chairs of the conference, have assembled System Modeling and Optimization to present the most up-to-date developments to professionals and academics alike.
Increasing complexity in engineering projects raises difficult challenges in industry and requires effective tools for correct-by-construction design or design verification. This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits.Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings. Applications of the methods presented are emphasized by considering various concurrency assumptions and types of system uncontrollability and unobservability. Also considered is the supervision problem for decentralized settings and hybrid dynamical systems. All proposed methods are fully worked-out, ready to use, and formally proven in a sound setting. design are also given. The work is self-contained and includes necessary background on Petri nets and supervision. Requiring only basic knowledge of undergraduate-level discrete mathematics, the text is accessible to a broad audience. Researchers and developers from various engineering fields may find effective means to reduce the complexity of design problems in the discrete-event setting. Graduate students may use the work as a self-study reference, and portions of the text may be used in advanced courses on discrete-event systems.
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references. |
You may like...
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
|