![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics, dynamics modeling, advanced control design techniques and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by. The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation method. Although primarily intended for researchers in robotic control, Advanced Control of Wheeled Inverted Pendulum Systems will also be useful reading for graduate students studying nonlinear systems more generally.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
This is a comprehensive, practical, easy-to-read book on process
control, covering some of the most important topics in the
petrochemical process industry, including Fieldbus, Multiphase Flow
Metering, and other recently developed control systems.
Robotized Transcranial Magnetic Stimulation describes the methods needed to develop a robotic system that is clinically applicable for the application of transcranial magnetic stimulation (TMS). Chapter 1 introduces the basic principles of TMS and discusses current developments towards robotized TMS. Part I (Chapters 2 and 3) systematically analyzes and clinically evaluates robotized TMS. More specifically, it presents the impact of head motion on the induced electric field. In Part II (Chapters 3 to 8), a new method for a robust robot/camera calibration, a sophisticated force-torque control with hand-assisted positioning, a novel FTA-sensor for system safety, and techniques for direct head tracking, are described and evaluated. Part III discusses these developments in the context of safety and clinical applicability of robotized TMS and presents future prospects of robotized TMS. Robotized Transcranial Magnetic Stimulation is intended for researchers as a guide for developing effective robotized TMS solutions. Professionals and practitioners may also find the book valuable.
Proportionala "integrala "derivative (PID) controllers are the most adopted controllers in industrial settings because of the advantageous cost/benefit ratio they are able to provide. Despite their long history and the know-how gained from years of experience, the availability of microprocessors and software tools and the increasing demand for higher product quality at reduced cost have stimulated researchers to devise new methodologies to improve their performance and make them easier to use. Practical PID Control covers important issues that arise when a PID controller is to be applied in practical cases. Its focus is on those functionalities that can provide significant improvements in performance in combination with a sound tuning of parameters. In particular, the choice of filter to make the controller proper, the use of a feedforward action and the selection of an anti-windup strategy are addressed. Further, the choice of the identification algorithm and of the model reduction technique are analysed in the context of model-based PID control. Widely adopted PID-based control architectures (ratio and cascade control) and performance assessment are also covered. For these topics, recent contributions are explained and compared with more standard approaches. A large number of simulation and experimental results are provided in order better to illustrate the different methodologies and to discuss their pros and cons. Practical PID Control is a helpful and instructive reference for researchers, graduate students and practitioners in process control.
This book presents techniques that enable mobile manipulation robots to autonomously adapt to new situations. Covers kinematic modeling and learning; self-calibration; tactile sensing and object recognition; imitation learning and programming by demonstration.
Provides a comprehensive overview and introduction to the concepts, methodologies, analysis, design and applications of metasynthetic computing and engineering. The author: * Presents an overview of complex systems, especially open complex giant systems such as the Internet, complex behavioural and social problems, and actionable knowledge discovery and delivery in the big data era. * Discusses ubiquitous intelligence in complex systems, including human intelligence, domain intelligence, social intelligence, network intelligence, data intelligence and machine intelligence, and their synergy through metasynthetic engineering. * Explains the concept and methodology of human-centred, human-machine-cooperated qualitative-to-quantitative metasynthesis for understanding and managing open complex giant systems, and its computing approach: metasynthetic computing. * Introduces techniques and tools for analysing and designing problem-solving systems for open complex problems and systems. Metasynthetic Computing and Engineering uses the systematology methodology in addressing system complexities in open complex giant systems, for which it may not only be effective to apply reductionism or holism. The book aims to encourage and inspire discussions, design, implementation and reflection of effective methodologies and tools for computing and engineering open complex systems and problems. Researchers, research students and practitioners in complex systems, artificial intelligence, data science, computer science, and even system science, cognitive science, behaviour science, and social science, will find this book invaluable.
A large 2008 ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM 2008), was held in Guangzhou, August 2008, China. Just like the name of the Colloquium, the theme for this conference is Advancing Computing, Communication, Control, and Management Technologies. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management is co-sponsored by Guangdong University of Business Studies, China, Peoples' Friendship University of Russia, Russia, Central South University, China, Southwestern University of Finance & Economics, China, and University of Amsterdam, Netherlands. It is also co-sponsored IEEE Technology Management Council, IEEE Computer Society, and Intelligent Information Technology Application Research Institute. Much work went into preparing a program of high quality. We received about 972 submissions. Every paper was reviewed by 3 program committee members, about 382 were selected as regular papers, representing a 39% acceptance rate for regular papers. The CCCM conferences serve as good platforms for the engineering community to meet with each other and to exchange ideas. The conference has also stroke a balance between theoretical and application development. The conference committees have been formed with over two hundred committee members who are mainly research center heads, faculty deans, department heads, professors, and research scientists from over 30 countries. The conferences are truly international meetings with a high level of participation from many countries. The response that we have received for the congress is excellent. This volume contains revised and extended research articles written by prominent researchers participating in the conference.
Integral processes with dead time are frequently encountered in the process industry; typical examples include supply chains, level control and batch distillation columns. Special attention must be paid to their control because they lack asymptotic stability (they are not self-regulating) and because of their delays. As a result, many techniques have been devised to cope with these hurdles both in the context of single-degree-of-freedom (proportional-integral-differential (PID)) and two-degree-of-freedom control schemes. Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: how to tune a PID controller and assess its performance; how to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; how to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives. Control of Integral Processes with Dead Time will serve academic researchers in systems with dead time both as a reference and stimulus for new ideas for further work and will help industry-based control and process engineers to solve their control problems using the most suitable technique and achieving the best cost: benefit ratio."
Theoretical and Computational Aspects of Feedback in Structural Systems with Piezoceramic Controllers.- Modeling and Approximation of a Coupled 3-D Structural Acoustics Problem.- Parameter Identification in the Frequency Domain.- On Model Identification of Gaussian Reciprocal Processes from the Eigenstructure of Their Covariances.- An Inverse Problem in Thermal Imaging.- Optimal Fixed-Finite-Dimensional Compensator for Burgers' Equation with Unbounded Input/Output Operators.- Boundary Control and Stabilization for a Viscous Burgers' Equation.- A Sinc-Galerkin Method for Convection Dominated Transport.- Discrete Observability of the Wave Equation on Bounded Domains in Euclidean Space.- A New Algorithm for Nonlinear Filtering.- Continuation Methods for Nonlinear Eigenvalue Problems via a Sinc-Galerkin Scheme.- On the Kalman-Yacubovich-Popov Lemma for Nonlinear Systems.- Robust Control of Distributed Parameter Systems with Structured Uncertainty.- On the Phase Portrait of the Karmarkar's Flow.- The Reduced Basis Method in Control Problems.- Numerical Treatment of Oscillating Integrals Appearing in Heat Conduction Problems.- Root Locus for Control Systems with Completely Separated Boundary Conditions.- On the Problem of Parameter Identification in Perspective Systems and its Application to Motion Estimation Problems in Computer Vision.- Over-Regularization of Ill-Posed Problems.- A Model for the Optimal Control of a Measles Epidemic.- Condition Numbers for the Sinc Matrices Associated with Discretizing the Second-Order Differential Operator.- Computational Models for Lattice Structures.- The Partial Differential Equations of Controlled Invariance.- What is the Distance Between Two Autoregressive Systems?.- Sinc Convolution Approximate Solution of Burgers' Equation.- Sinc-Galerkin Collocation Method for Parabolic Equations in Finite Space-Time Regions.- A Modified Levenberg-Marquardt Algorithm for Large-Scale Inverse Problems.- A Local Sampling Scheme for Invariant Evolution Equations on a Compact Symmetric Space, Especially the Sphere.- Hasse Diagram and Dynamic Feedback of Linear Systems.- Point Placement for Observation of the Heat Equation on the Sphere.
Multi-agent systems have numerous civilian, homeland security, and military applications; however, for all these applications, communication bandwidth, sensing range, power constraints, and stealth requirements preclude centralized command and control. The alternative is distributed coordination, which is more promising in terms of scalability, robustness, and flexibility. Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders. The authors models for distributed coordination arise from physical constraints and the complex environments in which multi-agent systems operate; they include Lagrangian models more realistic for mechanical-systems modeling than point models and fractional-order systems which better represent the consequences of environmental complexity. Other issues addressed in the text include the time delays inherent in networked systems, optimality concerns associated with the deisgn of energy-efficent algorithms, and the use of sampled-data settings in systems with intermittent neightbor-neighbor contact. Researchers, graduate students, and engineers interested in the field of multi-agent systems will find this monograph useful in introducing them to presently emerging research directions and problems in distributed coordination of multi-agent networks. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.
This book will help researchers and engineers in the design of ethical systems for robots, addressing the philosophical questions that arise and exploring modern applications such as assistive robots and self-driving cars. The contributing authors are among the leading academic and industrial researchers on this topic and the book will be of value to researchers, graduate students and practitioners engaged with robot design, artificial intelligence and ethics.
This book comprises the proceedings of the Recent Developments in
Control Theory and Applications workshop held in Toronto, Canada,
29th-30th June 1998 in honor of the 60th birthday of E.J. Davison.
While the scope of the workshop was quite broad, the main theme was
robust control, decentralized control and applications.
This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.
From the reviews: "The book is an excellent combination of theory and real-world applications. Each application not only demonstrates the power of the theoretical results but also is important on its own behalf." IEEE Control Systems Magazine
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of -mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: * Morphological Image Analysis for Computer Vision Applications. * Methods for Detecting of Structural Changes in Computer Vision Systems. * Hierarchical Adaptive KL-based Transform: Algorithms and Applications. * Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. * A Way of Energy Analysis for Image and Video Sequence Processing. * Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. * Scene Analysis Using Morphological Mathematics and Fuzzy Logic. * Digital Video Stabilization in Static and Dynamic Scenes. * Implementation of Hadamard Matrices for Image Processing. * A Generalized Criterion of Efficiency for Telecommunication Systems. The book is directed to PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
Compliant mechanisms and actuators are growing in importance due to their benefits in robotics, medical technology, sensor applications, or in handling compressible objects. This book helps to understand the mechanical behavior of compliant systems. Suggested classifications and different modeling methods are shown that allow for the description of compliant systems.
This book provides an in-depth understanding of precise and approximate MMC modeling and calculation techniques of engineering systems. The in-depth analysis demonstrates that it is only possible to precisely model and calculate the dependability of systems including s-dependent components with the knowledge of their (total) universe spaces, represented here by Markov spaces. They provide the basis for developing and verifying approximate MMC models. With the mathematical steps described and applied to several examples throughout this text, interested system developers and users can perform dependability analyses themselves. All examples are structured in precisely the same way.
This monograph has arisen from the multidisciplinary research extending over biology, robotics and hybrid systems theory. It is inspired by modeling reactive behavior of the immune system cell population, where each cell is considered an independent agent. The authors formulate the optimal control of maximizing the probability of robotic presence in a given region and discuss the application of the Minimum Principle for partial differential equations to this problem.
Societies survive in their environment and compete with each other depending on the technology they develop. Economic, military and political power are directly related to the available technology, while access to technology is key to the well-being of our societies at the individual, community and national level. The Robotics Divide analyzes how robotics will shape our societies in the twenty-first century; a time when industrial and service robotics, particularly for military and aerospace purposes, will become an essential technology. The book, written by experts in the field, focuses on the main technological trends in the field of robotics, and the impact that robotics will have on different facets of social life. By doing so, the authors aim to open the "black box" of a technology which, like any other, is designed, implemented and evaluated according to the economic and cultural patterns of a cosmopolitan society, as well as its relations of power. The Robotics Divide explores future developments in robotics technology and discusses the model of technological development and the implementation of robotics in this competitive market economy. Then the authors examine to what extent it is possible to determine the characteristic features of the robotic divide, namely in what ways the robotic divide differs from the digital divide, and how a model to integrate this technology can be developed without reproducing patterns of inequality and power that have characterized the advent of previous technologies. These issues - inequality, robotics and power - are of concern to robotics and advanced automation engineers, social scientists, economists and science policy experts alike.
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive and truck engines is inherently related to unsteady conditions. In fact, only a very small portion of a vehicle's operating pattern is true steady-state, e. g. , when cruising on a motorway. Moreover, the most critical conditions encountered by industrial or marine engines are met during transients too. Unfortunately, the transient operation of turbocharged diesel engines has been associated with slow acceleration rate, hence poor driveability, and overshoot in particulate, gaseous and noise emissions. Despite the relatively large number of published papers, this very important subject has been treated in the past scarcely and only segmentally as regards reference books. Merely two chapters, one in the book Turbocharging the Internal Combustion Engine by N. Watson and M. S. Janota (McMillan Press, 1982) and another one written by D. E. Winterbone in the book The Thermodynamics and Gas Dynamics of Internal Combustion Engines, Vol. II edited by J. H. Horlock and D. E. Winterbone (Clarendon Press, 1986) are dedicated to transient operation. Both books, now out of print, were published a long time ago. Then, it seems reasonable to try to expand on these pioneering works, taking into account the recent technological advances and particularly the global concern about environmental pollution, which has intensified the research on transient (diesel) engine operation, typically through the Transient Cycles certification of new vehicles.
Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book Fault-Diagnosis Systems published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers.
This book provides readers with a snapshot of the state-of-the art in fuzzy logic. Throughout the chapters, key theories developed in the last fifty years as well as important applications to practical problems are presented and discussed from different perspectives, as the authors hail from different disciplines and therefore use fuzzy logic for different purposes. The book aims at showing how fuzzy logic has evolved since the first theory formulation by Lotfi A. Zadeh in his seminal paper on Fuzzy Sets in 1965. Fuzzy theories and implementation grew at an impressive speed and achieved significant results, especially on the applicative side. The study of fuzzy logic and its practice spread all over the world, from Europe to Asia, America and Oceania. The editors believe that, thanks to the drive of young researchers, fuzzy logic will be able to face the challenging goals posed by computing with words. New frontiers of knowledge are waiting to be explored. In order to motivate young people to engage in the future development of fuzzy logic, fuzzy methodologies, fuzzy applications, etc., the editors invited a team of internationally respected experts to write the present collection of papers, which shows the present and future potentials of fuzzy logic from different disciplinary perspectives and personal standpoints.
TheThird International Workshop on Multi-Robot Systems was held in March 2005 at the Naval Research Laboratory in Washington, D. C. , USA. Bringing together leading researchers and government sponsors for three days of technicalinterchange on multi-robot systems, theworkshop follows two previous highly successful gatherings in 2002 and 2003. Likethe previous two workshops, the meeting began with presentations byvarious government p- gram managers describing application areas and programs with an interest in multi-robot systems. U. S. Government representatives were on handfrom theOf?ce of Naval Research and several other governmental of?ces. Top - searchers inthe ?eld then presented their current activities in many areas of multi-robot systems. Presentations spannedawide rangeof topics, incl- ing task allocation, coordination in dynamicenvironments, information/sensor sharing andfusion, distributed mapping and coverage, motion planning and control, human-robot interaction, and applications of multi-robot systems. All presentations were given in a single-track workshop format. This proce- ings documents the work presented at the workshop. The research presen- tions were followed by panel discussions, in which all participants interacted to highlight the challenges of this ?eld and to develop possible solutions. In addition to the invited research talks, researchers and students were given an opportunity to present their work at poster sessions. We would like to thank the Naval Research Laboratory for sponsoring this workshop and providing the - cilitiesforthesemeetingstotakeplace. WeareextremelygratefultoMagdalena Bugajska, Paul Wiegand, and Mitchell A. Potter, for their vital help (and long hours) in editing these proceedings and to Michelle Caccivio for providing the administrative support to the workshop. |
![]() ![]() You may like...
Black Radio/Black Resistance - The Life…
Micaela Di Leonardo
Hardcover
R3,231
Discovery Miles 32 310
Anti-Proverbs in Five Languages…
Anna T. Litovkina, Hrisztalina Hrisztova-Gotthardt, …
Hardcover
R2,951
Discovery Miles 29 510
|