![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This volume gathers the peer reviewed papers which were presented at the third edition of the International Workshop Service Orientation in Holonic and Multi-agent Manufacturing and Robotics SOHOMA 13 organized on June 20-22, 2013 by the Centre of Research in Computer Integrated Manufacturing and Robotics CIMR Bucharest, and hosted by the University of Valenciennes, France. The book is structured in five parts, each one covering a specific research domain which represents a trend for modern manufacturing control: Distributed Intelligence for Sustainable Manufacturing, Holonic and Multi-Agent Technologies for Manufacturing Planning and Control; Service Orientation in Manufacturing Management and Control, Intelligent Products and Product-driven Automation and Robotics for Manufacturing and Services. These five evolution lines have in common concepts related to service orientation in a distributed planning and control agent-based industrial environment; today it is generally recognized that the Service Oriented Enterprise Architecture paradigm has been looked upon as a suitable and effective approach for industrial automation and management of manufacturing enterprises."
This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing.
Fact finding in judicial proceedings is a dynamic process. This collection of papers considers whether computational methods or other formal logical methods developed in disciplines such as artificial intelligence, decision theory, and probability theory can facilitate the study and management of dynamic evidentiary and inferential processes in litigation. The papers gathered here have several epicenters, including (i) the dynamics of judicial proof, (ii) the relationship between artificial intelligence or formal analysis and "common sense," (iii) the logic of factual inference, including (a) the relationship between causality and inference and (b) the relationship between language and factual inference, (iv) the logic of discovery, including the role of abduction and serendipity in the process of investigation and proof of factual matters, and (v) the relationship between decision and inference.
There are more than 70 countries in the world that suffer from the presence of landmines. Annually, between 15,000 and 20,000 people are killed or injured by these mines so there is a pressing need for advances in technology to help to remove them. Anti-personnel Landmine Detection for Humanitarian Demining reports on state-of-the-art technologies developed during a Japanese National Research Project which ran from 2002 2007. The conventional, and often reliable, method of landmine detection is to use a metal detector to pick up small amounts of metal within the mine. Unfortunately, minefields are frequently strewn with small metal fragments which can camouflage landmines greatly hindering progress using this form of demining. The challenge, then, is to develop practical detection systems that can discriminate between anti-personnel (AP) landmines and randomly scattered innocent metal fragments. The results of research proposals from universities and industrial sources adopted by the Japan Science and Technology Agency are presented here. This book concentrates on various aspects of three main approaches to AP mine detection: enhancing and confirming the results of metal-detection scans using ground penetrating radar (GPR); using robot vehicles and manipulators to operate within minefields remotely; and methods of sensing the explosives within mines. Basic results are presented in the fields of GPR, nuclear quadrupole resonance, neutron thermal analysis and biosensors. The integration of these methods for workable robot operation is demonstrated. The project was carried out in conjunction with mine action centers in Croatia, Cambodia and Afghanistan and evaluation data from field trials of the technologies are also reported. The results presented by Professor Furuta and his colleagues will be most useful to anyone who is involved in the use or production of technical equipment associated with landmine removal. In addition, academics researching advances in this field and those working in remote sensing, mechatronics and robotics will find much to interest them and a co-ordinated body of work with which to expand their own studies.
This thesis introduces novel and significant results regarding the analysis and synthesis of positive systems, especially under l1 and L1 performance. It describes stability analysis, controller synthesis, and bounding positivity-preserving observer and filtering design for a variety of both discrete and continuous positive systems. It subsequently derives computationally efficient solutions based on linear programming in terms of matrix inequalities, as well as a number of analytical solutions obtained for special cases. The thesis applies a range of novel approaches and fundamental techniques to the further study of positive systems, thus contributing significantly to the theory of positive systems, a "hot topic" in the field of control.
Hybrid supervisory systems integrate and exchange information between discrete- and continuous-data-based controllers and subsystems. Application areas include process, manufacturing and service industries, healthcare, telecommunication, transportation and logistics, among others. From the hardware point of view, the rapid progress of information-processing power and its commercial availability has made possible the development of complex supervisory systems. Many barriers that restrained the evolution of supervisory systems in the past have been removed by the recent popularisation of the open-system paradigm. On the other hand, software has not followed the evolution in hardware and both the industrial and scientific communities have pointed out the need for a generic approach that guides the development of hybrid supervisory systems. Modelling and Analysis of Hybrid Supervisory Systems introduces a modelling formalism that merges Petri nets, differential equation systems and object-oriented methods; a formalism that is adequate for modelling complex and large-scale systems. To guide the designer and conduct hybrid modelling, the book describes a method that starts from the requirements of a supervisory system and results in a proposal for such a system. The method is mainly based on Unified Modelling Language diagrams, well-known tools in both academia and industry. In order to ensure that the supervisory system will behave as expected under any operational circumstances, a validation procedure that allows verification of the formal properties of the hybrid model is presented. In building a bridge between what is developed in academic research and what is available to theindustrial professional, this monograph places particular emphasis on the description of real-world examples; three of these a" an HVAC management system, a landing system and a cane-sugar factory a" are discussed at length. It will interest academic researchers working with hybrid systems and their applications and will answer the need of industry-based engineers to unify their control of continuous- and discrete-event systems.
Recent years have witnessed important developments in those areas of the mathematical sciences where the basic model under study is a dynamical system such as a differential equation or control process. Many of these recent advances were made possible by parallel developments in nonlinear and nonsmooth analysis. The latter subjects, in general terms, encompass differential analysis and optimization theory in the absence of traditional linearity, convexity or smoothness assumptions. In the last three decades it has become increasingly recognized that nonlinear and nonsmooth behavior is naturally present and prevalent in dynamical models, and is therefore significant theoretically. This point of view has guided us in the organizational aspects of this ASI. Our goals were twofold: We intended to achieve "cross fertilization" between mathematicians who were working in a diverse range of problem areas, but who all shared an interest in nonlinear and nonsmooth analysis. More importantly, it was our goal to expose a young international audience (mainly graduate students and recent Ph. D. 's) to these important subjects. In that regard, there were heavy pedagogical demands placed upon the twelve speakers of the ASI, in meeting the needs of such a gathering. The talks, while exposing current areas of research activity, were required to be as introductory and comprehensive as possible. It is our belief that these goals were achieved, and that these proceedings bear this out. Each of the twelve speakers presented a mini-course of four or five hours duration.
"Intelligent Control" considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of the fuzzy controller is then described and finally an evolutionary algorithm is applied to the neurally-tuned-fuzzy controller in which the sigmoidal function shape of the neural network is determined. The important issue of stability is addressed and the text demonstrates empirically that the developed controller was stable within the operating range. The text concludes with ideas for future research to show the reader the potential for further study in this area. "Intelligent Control "will be of interest to researchers from engineering and computer science backgrounds working in the intelligent and adaptive control."
"Proceedings of the First Symposium on Aviation Maintenance and Management "collects selected papers from the conference of ISAMM 2013 in China held in Xi'an on November 25-28, 2013. The book presents state-of-the-art studies on the aviation maintenance, test, fault diagnosis, and prognosis for the aircraft electronic and electrical systems. The selected works can help promote the development of the maintenance and test technology for the aircraft complex systems. Researchers and engineers in the fields of electrical engineering and aerospace engineering can benefit from the book. Jinsong Wang is a professor at School of Mechanical and Electronic Engineering of Northwestern Polytechnical University, China.
Applied Cyber-Physical Systems presents the latest methods and technologies in the area of cyber-physical systems including medical and biological applications. Cyber-physical systems (CPS) integrate computing and communication capabilities by monitoring, and controlling the physical systems via embedded hardware and computers. This book brings together unique contributions from renowned experts on cyber-physical systems research and education with applications. It also addresses the major challenges in CPS, and then provides a resolution with various diverse applications as examples. Advanced-level students and researchers focused on computer science, engineering and biomedicine will find this to be a useful secondary text book or reference, as will professionals working in this field.
This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike.
"Software Engineering for Experimental Robotics" collects contributions that describe the state of the art in software development for the Robotics domain. It reports on innovative ideas that are progressively introduced in the software development process, in order to promote the reuse of robotic software artifacts: domain engineering, components, frameworks and architectural styles. It illustrates the results of the most successful and well-known research projects which aim to develop reusable robotic software systems. Most of the chapters report on concepts and ideas discussed at the well attended ICRA2005 Workshop on "Principles and Practice of Software Development in Robotics," Barcelona, Spain, April 18 2005. The authors are recognised as leading scholars internationally, and the result is an effective blend of fundamental and innovative results on research and development in software for robotic systems, where one common factor is the integration of reusable building blocks. Besides the advancement in the field, most contributions survey the state of the art, report a number of practical applications to real systems, and discuss possible future developments.
The book presents recent advances in nature-inspired computing, giving a special emphasis to control systems applications. It reviews different techniques used for simulating physical, chemical, biological or social phenomena at the purpose of designing robust, predictive and adaptive control strategies. The book is a collection of several contributions, covering either more general approaches in control systems, or methodologies for control tuning and adaptive controllers, as well as exciting applications of nature-inspired techniques in robotics. On one side, the book is expected to motivate readers with a background in conventional control systems to try out these powerful techniques inspired by nature. On the other side, the book provides advanced readers with a deeper understanding of the field and a broad spectrum of different methods and techniques. All in all, the book is an outstanding, practice-oriented reference guide to nature-inspired computing addressing graduate students, researchers and practitioners in the field of control engineering.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
Universal vehicular communication promises many improvements in terms of ac- dent avoidance and mitigation, better utilization of roads and resources such as time and fuel, and new opportunities for infotainment applications. However, before widespread acceptance, vehicular communication must meet challenges comparable to the trouble and disbelief that accompanied the introduction of traf c lights back then. The rst traf c light was installed in 1868 in London to signal railway, but only later, in 1912, was invented the rst red-green electric traf c light. And roughly 50 years after the rst traf c light, in 1920, the rst four-way traf c signal comparable to our today's traf c lights was introduced. The introduction of traf c signals was necessary after automobiles soon became prevalent once the rst car in history, actually a wooden motorcycle, was constructed in 1885. Soon, the scene became complicated, requiring the introduction of the "right-of-way" philosophy and later on the very rst traf c light. In the same way the traf c light was a necessary mean to regulate the beginning of the automotive life and to protect drivers, passengers, as well as pedestrians and other inhabitants of the road infrastructure, vehicular communication is necessary to accommodate the further growth of traf c volume and to signi cantly reduce the number of accidents.
The problem of controlling or stabilizing a system of differential equa tions in the presence of random disturbances is intuitively appealing and has been a motivating force behind a wide variety of results grouped loosely together under the heading of "Stochastic Control." This book is concerned with a special instance of this general problem, the "Adaptive LQ Regulator," which is a stochastic control problem of partially observed type that can, in certain cases, be solved explicitly. We first describe this problem, as it is the focal point for the entire book, and then describe the contents of the book. The problem revolves around an uncertain linear system x(O) = x~ in R", where 0 E {1, ... , N} is a random variable representing this uncertainty and (Ai' B , C) and xJ are the coefficient matrices and initial state, respectively, of j j a linear control system, for eachj = 1, ... , N. A common assumption is that the mechanism causing this uncertainty is additive noise, and that conse quently the "controller" has access only to the observation process y( . ) where y = Cex +~.
Offers a unique multidisciplinary overview of how humans interact with soft objects and how multiple sensory signals are used to perceive material properties, with an emphasis on object deformability. The authors describe a range of setups that have been employed to study and exploit sensory signals involved in interactions with compliant objects as well as techniques to simulate and modulate softness - including a psychophysical perspective of the field. Multisensory Softness focuses on the cognitive mechanisms underlying the use of multiple sources of information in softness perception. Divided into three sections, the first Perceptual Softness deals with the sensory components and computational requirements of softness perception, the second Sensorimotor Softness looks at the motor components of the interaction with soft objects and the final part Artificial Softness focuses on the identification of exploitable guidelines to help replicate softness in artificial environments.
This thesis introduces a new integrated algorithm for the detection of lane-level irregular driving. To date, there has been very little improvement in the ability to detect lane level irregular driving styles, mainly due to a lack of high performance positioning techniques and suitable driving pattern recognition algorithms. The algorithm combines data from the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and lane information using advanced filtering methods. The vehicle state within a lane is estimated using a Particle Filter (PF) and an Extended Kalman Filter (EKF). The state information is then used within a novel Fuzzy Inference System (FIS) based algorithm to detect different types of irregular driving. Simulation and field trial results are used to demonstrate the accuracy and reliability of the proposed irregular driving detection method.
Roboticsis undergoingamajortransformationinscopeanddimension.From a largelydominantindustrialfocus,roboticsis rapidly expandinginto human environments and vigorouslyengaged in its new challenges. Interacting with, assisting, serving, and exploring with humans, the emerging robots will - creasingly touch people and their lives. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across - verse research areas and scienti?c disciplines, such as: biomechanics, haptics, neurosciences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are pr- ing an abundant source of stimulation and insights for the ?eld of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. TheSpringerTractsinAdvancedRobotics(STAR)isdevotedtobringingto the research community the latest advances in the robotics ?eld on the basis of their signi?cance and quality. Through a wide and timely dissemination of critical research developments in robotics, our objective with this series is to promotemoreexchangesandcollaborationsamongtheresearchersinthec- munity and contributeto further advancements inthis rapidlygrowing?eld. The monographwritten byAlejandro DizanVasquez Goveafocusesonthe practicalproblem of moving in a cluttered environment with pedestrians and vehicles. A frameworkbased on Hidden Markov models is developed to learn typical motion patterns which can be used to predict motion on the basis of sensor data. All the theoretical results have been implemented and validated with experiments, using both real and simulated data.
This volume contains the proceedings of the Second International Workshop on Optimal Design and Control, held in Arlington, Virginia, 30 September-3 Octo ber, 1997. The First Workshop was held in Blacksburg, Virginia in 1994. The proceedings of that meeting also appeared in the Birkhauser series on Progress in Systems and Control Theory and may be obtained through Birkhauser. These workshops were sponsored by the Air Force Office of Scientific Re search through the Center for Optimal Design and Control (CODAC) at Vrrginia Tech. The meetings provided a forum for the exchange of new ideas and were designed to bring together diverse viewpoints and to highlight new applications. The primary goal of the workshops was to assess the current status of research and to analyze future directions in optimization based design and control. The present volume contains the technical papers presented at the Second Workshop. More than 65 participants from 6 countries attended the meeting and contributed to its success. It has long been recognized that many modern optimal design problems are best viewed as variational and optimal control problems. Indeed, the famous problem of determining the body of revolution that produces a minimum drag nose shape in hypersonic How was first proposed by Newton in 1686. Optimal control approaches to design can provide theoretical and computational insight into these problems. This volume contains a number of papers which deal with computational aspects of optimal control."
A common sense of time among all the elements of a distributed measurement and control system allows the use of new techniques for the solution of problems with complex synchronization requirements or arising from the interaction of many sensors and actuators. Such a common sense of time may be accomplished using IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (IEEE 1588-2002) to synchronize real-time clocks incorporated within each component of the system. IEEE 1588, published in November 2002, is a technology new to the engineering community expanding the performance capabilities of Ethernet networks so that they become relevant for measurement and control; this monograph embodies the first unified treatment of the associated technology, standards and applications. Readers unfamiliar with IEEE 1588 will gain understanding of the context of the technology it represents and, from three chapters of case studies, its role in a variety of application settings. To engineers implementing synchronization within their systems Measurement, Control, and Communication Using IEEE 1588 provides detailed discussion of the complex features of the standard. Together with the essential material on best practice and critical implementation issues, these provide invaluable assistance in the design of new applications.
Control theory has applications to a number of areas in engineering and communication theory. This introductory text on the subject is fairly self-contained and aimed primarily at advanced mathematics and engineering students in various disciplines. The topics covered include realization problems, linear-quadratic optimal control, stability theory, stochastic modeling and recursive estimation algorithms in communications and control, and distributed system modeling. These topics have a wide range of applicability, and provide background for further study in the control and communications areas. In the early chapters the basics of linear control systems as well as the fundamentals of stochastic control are presented in a unique way so that the methods generalize to a useful class of distributed parameter and nonlinear system models. The control of distributed parameter systems (systems governed by PDEs) is based on the framework of linear quadratic Gaussian optimization problems. The approach here utilizes methods based on Wiener-Hopf integral equations. Additionally, the important notion of state space modeling of distributed systems is examined. Basic results due to Gohberg and Krein on convolution are given and many results are illustrated with some examples that carry throughout the text. The standard linear regulator problem is studied in both the continuous and discrete time cases, followed by a discussion of the (dual) filtering problems. Later chapters treat the stationary regulator and filtering problems with a Wiener-Hopf approach. This leads to spectral factorization problems and useful iterative algorithms that follow naturally from the methods employed. Theinterplay between time and frequency domain approaches is emphasized. |
You may like...
Financial Mathematics For Actuaries…
Wai-Sum Chan, Yiu-Kuen Tse
Hardcover
R3,302
Discovery Miles 33 020
God in the Enlightenment
William J. Bulman, Robert G. Ingram
Hardcover
R3,761
Discovery Miles 37 610
|