![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
Systems with delays appear frequently in engineering; typical examples of time-delay systems are communication networks, chemical processes and tele-operation systems. The presence of delays makes system analysis and control design much more complicated. During the last decade, we have witnessed significant developments in robust control of time-delay systems. Robust Control of Time-delay Systems presents a systematic and comprehensive treatment for robust (H-infinity) control of such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. This synthesis of the authora (TM)s recent work covers the whole range of robust control of time-delay systems: from controller parameterization and design to controller implementation; from the Nehari and one-block problems to the four-block problem; from theoretical developments to practical issues. The major tools used in this book are similarity transformation, the chain-scattering approach and J-spectral factorization. The idea is, in the words of Albert Einstein, to "make everything as simple as possible, but not simpler." A website associated with the book is a source of MATLABA(R) and SimulinkA(R) material which will assist with simulation and modelling of the material in the text. Robust Control of Time-delay Systems is self-contained and will interest control theorists, researchers and mathematicians working with time-delay systems and engineers looking to design commercial controllers or to use them in plants or communication systems with time delays.Its methodical approach will also be of value to graduates studying either general robust control theory or its particular applications in time-delay systems.
The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.
This book focuses on the analysis and design of low-density parity-check (LDPC) coded modulations, which are becoming part of several current and future communication systems, such as high-throughput terrestrial and satellite wireless networks. In this book, a two-sided perspective on the design of LDPC coded systems is proposed, encompassing both code/modulation optimization (transmitter side) and detection algorithm design (receiver side). After introducing key concepts on error control coding, in particular LDPC coding, and detection techniques, the book presents several relevant applications. More precisely, by using advanced performance evaluation techniques, such as extrinsic information transfer charts, the optimization of coded modulation schemes are considered for (i) memoryless channels, (ii) dispersive and partial response channels, and (iii) concatenated systems including differential encoding. This book is designed to be used by graduate students working in the field of communication theory, with particular emphasis on LDPC coded communication schemes, and industry experts working on related fields.
Production engineering and management involve a series of planning and control activities in a production system. A production system can be as small as a shop with only one machine or as big as a global operation including many manufacturing plants, distribution centers, and retail locations in multiple continents. The product of a production system can also vary in complexity based on the material used, technology employed, etc. Every product, whether a pencil or an airplane, is produced in a system which depends on good management to be successful. Production management has been at the center of industrial engineering and management science disciplines since the industrial revolution. The tools and techniques of production management have been so successful that they have been adopted to various service industries, as well. The book is intended to be a valuable resource to undergraduate and graduate students interested in the applications of production management under fuzziness. The chapters represent all areas of production management and are organized to reflect the natural order of production management tasks. In all chapters, special attention is given to applicability and wherever possible, numerical examples are presented. While the reader is expected to have a fairly good understanding of the fuzzy logic, the book provides the necessary notation and preliminary knowledge needed in each chapter.
The International Workshop on Human-Friendly Robotics (HFR) is an annual meeting that brings together academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects related to the introduction of robots into everyday life. HFR collects contributions on current developments of a new generation of human-friendly robots, i.e., safe and dependable machines, operating in the close vicinity to humans or directly interacting with them in a wide range of domains. The papers contained in the book describe the newest and most original achievements in the field of human-robot-interaction coming from the work and ideas of young researchers. The contributions cover a wide range of topics related to human-robot interaction, both physical and cognitive, including theories, methodologies, technologies, empirical and experimental studies.
Intelligent control is an emergent field involving the development of new control techniques, such as reasoning, learning and perception, and has a great impact on a number of applications including robotics and process control. The symposium brought together control systems specialists, equipment manufacturers, and end-users, to evaluate techniques, components, and instruments for intelligent control. The selected papers in this volume cover intelligent control techniques, actuators, sensors, image processing, computer vision, software and communications. Papers relating to applications, such as robotics, power and process control, manufacturing, aerospace and traffic control are also included.
This 2nd edition textbook has been expanded to include of 175 additional pages of additional content, created in response to readers feedback, as well as to new hardware and software releases. The book presents foundational robotics concepts using the ROBOTIS BIOLOID and OpenCM-904 robotic systems, and is suitable as a curriculum for a first course in robotics for undergraduate students or a self-learner. It covers wheel-based robots, as well as walking robots. Although it uses the standard "Sense, Think, Act" approach, communications (bot-to-bot and PC-to-bot) programming concepts are treated in more depth (wired and wireless ZigBee/BlueTooth). Algorithms are developed and described via ROBOTIS' proprietary RoboPlus IDE, as well as the more open Arduino-based Embedded C environments. Additionally, a vast array of web-based multimedia materials are used for illustrating robotics concepts, code implementations and videos of actual resulting robot behaviors. Advanced sensor interfacing for gyroscope, inertial measuring unit, foot pressure sensor and color camera are also demonstrated.
The area of adaptive systems, which encompasses recursive identification, adaptive control, filtering, and signal processing, has been one of the most active areas of the past decade. Since adaptive controllers are fundamentally nonlinear controllers which are applied to nominally linear, possibly stochastic and time-varying systems, their theoretical analysis is usually very difficult. Nevertheless, over the past decade much fundamental progress has been made on some key questions concerning their stability, convergence, performance, and robustness. Moreover, adaptive controllers have been successfully employed in numerous practical applications, and have even entered the marketplace.
The quadratic cost optimal control problem for systems described by linear ordinary differential equations occupies a central role in the study of control systems both from a theoretical and design point of view. The study of this problem over an infinite time horizon shows the beautiful interplay between optimality and the qualitative properties of systems such as controllability, observability, stabilizability, and detectability. This theory is far more difficult for infinite dimensional systems such as those with time delays and distributed parameter systems. This reorganized, revised, and expanded edition of a two-volume set is a self-contained account of quadratic cost optimal control for a large class of infinite dimensional systems. The book is structured into five parts. Part I reviews basic optimal control and game theory of finite dimensional systems, which serves as an introduction to the book. Part II deals with time evolution of some generic controlled infinite dimensional systems and contains a fairly complete account of semigroup theory. theory in delay differential and partial differential equations. Part III studies the generic qualitative properties of controlled systems. Parts IV and V examine the optimal control of systems when performance is measured via a quadratic cost. Boundary control of parabolic and hyperbolic systems and exact controllability are also covered. Part I on finite dimensional controlled dynamical systems contains new material: an expanded chapter on the control of linear systems including a glimpse into H8 theory and dissipative systems, and a new chapter on linear quadratic two-person zero-sum differential games. A unique chapter, new to the second edition, brings together advanced concepts and techniques of semigroup theory and interpolation of linear operators that are usually treated independently. The material on delay systems and structural operators is not available elsewhere in book form.Control of infinite dimensional systems has a wide range and growing number of challenging applications. arise from new phenomenological studies, new technological developments, and more stringent design requirements. It will be useful for mathematicians, graduate students, and engineers interested in the field and in the underlying conceptual ideas of systems and control.
This is a cornerstone publication in robotic grasping. The authors have developed an internationally recognized expertise in this area. Additionally, they designed and built several prototypes which attracted the attention of the scientific community. The purpose of this book is to summarize years of research and to present, in an attractive format, the expertise developed by the authors on a new technology for grasping which has achieved great success both in theory and in practice.
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on the novelty of theoretical contributions validated by experimental results. This unique reference presents the latest advances in robotics, with ideas that are conceived conceptually and have been explored experimentally.
The book introduces novel algorithms for designing fault-tolerant control (FTC) systems using the behavioral system theoretic approach, and presents a demonstration of successful novel FTC mechanisms on several benchmark examples. The authors also discuss a new transient management scheme, which is an essential requirement for the implementation of active FTC systems, and two data-driven methodologies that are broadly classified as active FTC systems: the projection-based approach and the online-redesign approach. These algorithms do not require much a priori information about the plant in real-time, and in addition this novel implementation of active FTC systems circumvents various weaknesses induced by using a diagnostic module in real-time. The book provides graduate students taking masters and doctoral courses in mathematics, control, and electrical engineering an excellent stepping-stone for their research. It also appeals to practitioners interested to apply innovative fail-safe control techniques.
Active Braking Control Design for Road Vehicles focuses on two main brake system technologies: hydraulically-activated brakes with on-off dynamics and electromechanical brakes, tailored to brake-by-wire control. The physical differences of such actuators enjoin the use of different control schemes so as to be able fully to exploit their characteristics. The authors show how these different control approaches are complementary, each having specific peculiarities in terms of either performance or of the structural properties of the closed-loop system. They also consider other problems related to the design of braking control systems, namely: * longitudinal vehicle speed estimation and its relationship with braking control system design; * tire-road friction estimation; * direct estimation of tire-road contact forces via in-tire sensors, providing a treatment of active vehicle braking control from a wider perspective linked to both advanced academic research and industrial reality.
This book is a tribute to Prof. Alberto Isidori on the occasion of his 65th birthday. Prof. Isidori's proli?c, pioneering and high-impact research activity has spanned over 35 years. Throughout his career, Prof. Isidori has developed ground-breaking results, has initiated researchdirections and has contributed towardsthe foundationofnonlinear controltheory.In addition, his dedication to explain intricate issues and di?cult concepts in a simple and rigorous way and to motivate young researchers has been instrumental to the intellectual growth of the nonlinear control community worldwide. The volume collects 27 contributions written by a total of 52 researchers. The principal author of each contribution has been selected among the - searchers who have worked with Prof. Isidori, have in?uenced his research activity, or have had the privilege and honour of being his PhD students. The contributions address a signi?cant number of control topics, including th- retical issues, advanced applications, emerging control directions and tutorial works. The diversity of the areas covered, the number of contributors and their international standing provide evidence of the impact of Prof. Isidori in the control and systems theory communities. The book has been divided into six parts: System Analysis, Optimization Methods, Feedback Design, Regulation, Geometric Methods and Asymptotic Analysis, re?ecting important control areas which have been strongly in- enced and, in some cases, pioneered by Prof. Isidori.
This book offers a compact introduction to modern linear control design. The simplified overview presented of linear time-domain methodology paves the road for the study of more advanced non-linear techniques. Only rudimentary knowledge of linear systems theory is assumed - no use of Laplace transforms or frequency design tools is required. Emphasis is placed on assumptions and logical implications, rather than abstract completeness; on interpretation and physical meaning, rather than theoretical formalism; on results and solutions, rather than derivation or solvability. The topics covered include transient performance and stabilization via state or output feedback; disturbance attenuation and robust control; regional eigenvalue assignment and constraints on input or output variables; asymptotic regulation and disturbance rejection. Lyapunov theory and Linear Matrix Inequalities (LMI) are discussed as key design methods. All methods are demonstrated with MATLAB to promote practical use and comprehension.
The optimal estimation problems for linear dynamic systems, and in particular for systems with aftereffect, reduce to different variational problems. The type and complexity of these variational problems depend on the process model, the model of uncertainties, and the estimation performance criterion. A solution of a variational problem determines an optimal estimator. In addition, frequently the optimal algorithm for one noise model must operate under another, more complex assumption about noise. Hence, simplified algorithms must be used. It is important to evaluate the level of nonoptimality for the simplified algorithms. Since the original variational problems can be very difficult, the estimate of nonoptimality must be obtained without solving the original variational problem. In this book, guaranteed levels of nonoptimality for simplified estimation and control algorithms are constructed. To obtain these levels the duality theory for convex extremal problems is used. Audience: This book will be of interest to applied mathematicians, researchers and engineers who deal with estimation and control systems. The material, which requires a good knowledge of calculus, is also suitable for a two-semester graduate or postgraduate course.
The international conference on Automation and Robotics-ICAR2011 is held during December 12-13, 2011 in Dubai, UAE. The proceedings of ICAR2011 have been published by Springer Lecture Notes in Electrical Engineering, which include 163 excellent papers selected from more than 400 submitted papers. The conference is intended to bring together the researchers and engineers/technologists working in different aspects of intelligent control systems and optimization, robotics and automation, signal processing, sensors, systems modeling and control, industrial engineering, production and management. This part of proceedings includes 82 papers contributed by many researchers in relevant topic areas covered at ICAR2011 from various countries such as France, Japan, USA, Korea and China etc. The session topic of this proceeding is signal processing and industrial engineering, production and management, which includes papers about signal reconstruction, mechanical sensors, real-time systems control system identification, change detection problems, business process modeling, production planning, scheduling and control, computer-based manufacturing technologies, systems modeling and simulation, facilities planning and management, quality control and management, precision engineering, intelligent design and manufacturing. The papers in this proceedings focus on industry engineering to promote efficiency and affect for the world, which typically showed their advanced research work recently in their various field. I am sure that discussing with many colleagues will give much more creative idea for each other on ICAR2011. All of papers with powerful evidence and detail demonstration involved the authors' numerous time and energy will be proved valuable by their unexhausted exploring sprit. Sincere thanks to the committee and all the authors, in additionally, including anonymous reviewers from many fields and organizations. They pointed out us direction to go on research work for the world. "
This book presents proceedings of the third international conference in this field, continuing the success of the previous events. The peer-reviewed and the selected papers are arranged to make the proposed book the most recent and complete overview on the State-of-the-Art in Cable-Driven Parallel Robots! The conference took place 2017 in Quebec, QC, Canada,
Variable speed is one of the important requirements in most of the electric drives. Earlier dc motors were the only drives that were used in industries requiring - eration over a wide range of speed with step less variation, or requiring fine ac- racy of speed control. Such drives are known as high performance drives. AC - tors because of being highly coupled non-linear devices can not provide fast dynamic response with normal controls. However, recently, because of ready availability of power electronic devices, and digital signal processors ac motors are beginning to be used for high performance drives. Field oriented control or vector control has made a fundamental change with regard to dynamic perfo- ance of ac machines. Vector control makes it possible to control induction or s- chronous motor in a manner similar to control scheme used for the separately - cited dc motor. Recent advances in artificial intelligence techniques have also contributed in the improvement in performance of electric drives. This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the impro- ment of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on sensorless and direct torque control of electric drives as up-to date references in these topics are provided.
This book presents the cutting edge developments within a broad field related to robotic sailing. The contributions were presented during the 8th International Robotic Sailing Conference, which has taken place as a part of the 2015 World Robotic Sailing Championships in Mariehamn, Aland (Finland), August 31st - September 4th 2015. Since more than a decade, a series of competitions such as the World Robotic Sailing Championship have stimulated a variety of groups to work on research and development around autonomous sailing robots, which involves boat designers, naval architects, electrical engineers and computer scientists. While many of the challenges in building a truly autonomous sailboat are still unsolved, the books presents the state of the art of research and development within platform optimization, route and stability planning, collision avoidance, power management and boat control.
Complete with online files and updates, this cutting-edge text looks at the next generation of unmanned flying machines. Aerial robots can be considered as an evolution of the Unmanned Aerial Vehicles (UAVs). This book provides a complete overview of all the issues related to aerial robotics, addressing problems ranging from flight control to terrain perception and mission planning and execution. The major challenges and potentials of heterogeneous UAVs are comprehensively explored.
The emergence of flow control as an attractive new field is owed to breakthroughs in MEMS (micro-electromechanical systems) and related technologies. The instrumentation of fluid flows on extremely short length and short time scales requires the practical tool of control algorithms with provable performance guarantees. Dedicated to this problem, Flow Control by Feedback, brings together controller design and fluid mechanics expertise in an exposition of the latest research results. Featuring: Exhaustive treatment of flow control core areas including stabilization and mixing control techniques; self-contained introductory sections on Navier-Stokes equations, linear and nonlinear control and sensors and MEMS to facilitate accessibility to this cross-disciplinary subject; a comprehensive survey of feedback algorithms for flow control that are currently available. In response to the intense interest in flow control, this volume will be an essential addition to the library of researchers and graduate students in control theory, fluid mechanics, mathematics and physics. Content structure is ideal for instruction on flow control modules or as supplementary reading on fluid dynamics and infinite dimensional systems courses.
This book deals specifically with control theories relevant to the design of control units for switched power electronics devices, for the most part represented by DC DC converters and supplies, by rectifiers of different kinds and by inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by multiple case studies and examples showing their application in the emerging field of power electronics.
This volume is intended for researchers in engineering and applied mathematics. It can also be used as a textbook for graduate students dealing with non-linear systems and control theory. After a self-contained treatment of the differential-geometric prerequisites, the book deals with controllability and observability properties of nonlinear systems, as well as various ways to obtain input-output representations. Problems of transforming nonlinear systems into simpler forms are discussed, including the feedback linearization problem. The disturbance and input-output decoupling problem are treated in detail, as well as some aspects of feedback stabilization, and interconnection and inversion of nonlinear systems. Emphasis is put on fundamental notions as (controlled) invariant distributions and submanifolds, together with algorithms to compute the required feedbacks. Extensions of these methods to other synthesis problems are indicated in the exercises at the end of each chapter. Special attention is paid to mechanical nonlinear control systems, and finally the theory is extended to general continuous-time and discrete time systems. Numerous examples and exercises illustrate the main results of the book.
This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians. |
You may like...
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Design of Feedback Control Systems
Raymond T. Stefani, Bahram Shahian, …
Hardcover
R6,540
Discovery Miles 65 400
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Fault Detection, Supervision and Safety…
J. Chen, R.J. Patton
Paperback
R6,901
Discovery Miles 69 010
|