Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This self-contained monograph describes basic set-theoretic methods for control. It provides a discussion of their links to fundamental problems in Lyapunov stability analysis and stabilization, optimal control, control under constraints, persistent disturbance rejection, and uncertain systems analysis and synthesis. The work presents several established and potentially new applications, along with numerical examples and case studies. A key theme is the trade-off between exact (but computationally intensive) and approximate (but conservative) solutions to problems. Mathematical language is kept to the minimum necessary.
Classical optimization methodologies fall short in very large and complex domains. In this book is suggested a different approach to optimization, an approach which is based on the 'blind' and heuristic mechanisms of evolution and population genetics. The genetic approach to optimization introduces a new philosophy to optimization in general, but particularly to engineering. By introducing the 'genetic' approach to robot trajectory generation, much can be learned about the adaptive mechanisms of evolution and how these mechanisms can solve real world problems. It is suggested further that optimization at large may benefit greatly from the adaptive optimization exhibited by natural systems when attempting to solve complex optimization problems, and that the determinism of classical optimization models may sometimes be an obstacle in nonlinear systems.This book is unique in that it reports in detail on an application of genetic algorithms to a real world problem, and explains the considerations taken during the development work. Futhermore, it addresses robotics in two new aspects: the optimization of the trajectory specification which has so far been done by human operators and has not received much attention for both automation and optimization, and the introduction of a heuristic strategy to a field predominated by deterministic strategies.
This book deals specifically with control theories relevant to the design of control units for switched power electronics devices, for the most part represented by DC DC converters and supplies, by rectifiers of different kinds and by inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by multiple case studies and examples showing their application in the emerging field of power electronics.
This book presents select proceedings of the Electric Power and Renewable Energy Conference 2020 (EPREC 2020). This book provides rigorous discussions, case studies, and recent developments in emerging areas of control systems, especially, load frequency control, wide-area monitoring, control & instrumentation, optimization, intelligent control, energy management system, SCADA systems, etc. The contents of this book will be useful to researchers and professionals interested in control theory and its applications to power grids and systems. The book can also be used by policy makers and power engineers involved in power generation and distribution.
Petri Net Synthesis for Discrete Event Control of Manufacturing Systems develops two essential resource-sharing concepts: parallel and sequential mutual exclusions and theoretical results in Petri synthesis. A parallel mutual exclusion (PME) is defined to model a resource shared by independent distributed processes, and a sequential mutual exclusion is a sequential composition of PMEs, modeling a resource shared by sequentially-related processes. A hybrid synthesis methodology for Petri net models and controllers is proposed using top-down, modular, and bottom-up design ideas and the mutual exclusion theory. An aggregate Petri net model is refined by replacing places and /or transitions with basic design modules which are mathematically and graphically described. Petri net design methods are presented for such buffers as automatic storage and retrieval systems. Using the proposed method synthesizes both Petri net structure and feasible initial markings, guaranteeing that resulting Petri nets have desirable system properties such as freedom from deadlock and cyclic behavior. A Petri net controller is extended to error recovery for automated manufacturing systems. The theory can guarantee that the desired system properties achieved by the original design will be preserved when the controller is augmented to deal with an error in the prescribed methods. Control code has been directly generated from Petri net definitions. The algorithm and implementation details are given for a flexible manufacturing system. Using the approach presented in Petri Net Synthesis for Discrete Event Control of Manufacturing Systems, engineers and research workers can develop their own discrete event control applications and experiments.
This monograph is framed within the context of off-road mobile robotics. In particular, it discusses issues related to modelling, localization, and motion control of tracked mobile robots working in planar slippery conditions. Tracked locomotion constitutes a well-known solution for mobile platforms operating over diverse challenging terrains, for that reason, tracked robotics constitutes an important research field with many applications (e.g. agriculture, mining, search and rescue operations, military activities). The specific topics of this monograph are: historical perspective of tracked vehicles and tracked robots; trajectory-tracking model taking into account slip effect; visual-odometry-based localization strategies; and advanced slip-compensation motion controllers ensuring efficient real-time execution. Physical experiments with a real tracked robot are presented showing the better performance of the suggested novel approaches to known techniques. Keywords: longitudinal slip, visual odometry, slip-compensation control, robust predictive control, trajectory tracking. Related subjects: Robotics Mechanical Engineering Mechanics Computer Science Artificial Intelligence - Applications "
- the author is in the BIMA Hall of Fame and is Chief Technology & Innovation Officer at Ernst & Young - the book explains the current state of AI and how it is governed, as well as detailing five potential futures involving AI and providing a clear Roadmap to manage the future of AI - easy and fun to read
Mechatronics is the synergistic combination of precision engineering, electronics, photonics and IT engineering. The main research task for mechatronics is development and control of advanced hybrid systems covering all these fields and supported by interdisciplinary studies. This book presents recent state of advances in mechatronics presented on the 7th International Conference Mechatronics 2007, hosted at the Faculty of Mechatronics, Warsaw University of Technology, Poland. The chosen topics of the conference included: Nanotechnology, Automatic Control and Robotics, Biomedical Engineering, Design Manufacturing and Testing of MEMS, Metrology, Photonics, Mechatronic Products. The selected papers give an overview of the state-of-the-art and present new research results and prospects of the future development in this interdisciplinary field of mechatronic systems. This book will provide up-to-date and useful knowledge for researchers and engineers involved in mechatronics and related fields.
This book presents applications of Newton-like and other similar methods to solve abstract functional equations involving fractional derivatives. It focuses on Banach space-valued functions of a real domain - studied for the first time in the literature. Various issues related to the modeling and analysis of fractional order systems continue to grow in popularity, and the book provides a deeper and more formal analysis of selected issues that are relevant to many areas - including decision-making, complex processes, systems modeling and control - and deeply embedded in the fields of engineering, computer science, physics, economics, and the social and life sciences. The book offers a valuable resource for researchers and graduate students, and can also be used as a textbook for seminars on the above-mentioned subjects. All chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references.
Signal Measurement and Estimation Techniques for Micro and
Nanotechnology discusses micro, nano and robotic cells and gives a
state-of-the-art presentation of the different techniques and
solutions to measure and estimate signals at the micro and nano
scale. New technologies and applications such as micromanipulation
(artificial components, biological objects), micro-assembly (MEMS,
MOEMS, NEMS) and material and surface force characterization are
covered. The importance of sensing at the micro and nano scale is
presented as a key issue in control systems, as well as for
understanding the physical phenomena of these systems. The book
also:
This book provides new insight on the problem of closed-loop performance and oscillations in discontinuous control systems, covering the class of systems that do not necessarily have low-pass filtering properties. The author provides a practical, yet rigorous and exact approach to analysis and design of discontinuous control systems via application of a novel frequency-domain tool: the locus of a perturbed relay system. Presented are a number of practical examples applying the theory to analysis and design of discontinuous control systems from various branches of engineering, including electro-mechanical systems, process control, and electronics. Discontinuous Control Systems is intended for readers who have knowledge of linear control theory and will be of interest to graduate students, researchers, and practicing engineers involved in systems analysis and design.
Designed to offer an accessible set of case studies and analyses of ethical dilemmas in data science. This book will be suitable for technical readers in data science who want to understand diverse ethical approaches to AI.
Modern methods of filter design and controller design often yield systems of very high order, posing a problem for their implementation. Over the past two decades or so, sophisticated methods have been developed to achieve simplification of filters and controllers. Such methods often come with easy-to-use error bounds, and in the case of controller simplification methods, such error bounds will usually be related to closed-loop properties.This book is the first comprehensive treatment of approximation methods for filters and controllers. It is fully up to date, and it is authored by two leading researchers who have personally contributed to the development of some of the methods. Balanced truncation, Hankel norm reduction, multiplicative reduction, weighted methods and coprime factorization methods are all discussed.The book is amply illustrated with examples, and will equip practising control engineers and graduates for intelligent use of commercial software modules for model and controller reduction.
This book presents the cyber culture of micro, macro, cosmological, and virtual computing. The book shows how these work to formulate, explain, and predict the current processes and phenomena monitoring and controlling technology in the physical and virtual space.The authors posit a basic proposal to transform description of the function truth table and structure adjacency matrix to a qubit vector that focuses on memory-driven computing based on logic parallel operations performance. The authors offer a metric for the measurement of processes and phenomena in a cyberspace, and also the architecture of logic associative computing for decision-making and big data analysis.The book outlines an innovative theory and practice of design, test, simulation, and diagnosis of digital systems based on the use of a qubit coverage-vector to describe the functional components and structures. Authors provide a description of the technology for SoC HDL-model diagnosis, based on Test Assertion Blocks Activated Graph. Examples of cyber-physical systems for digital monitoring and cloud management of social objects and transport are proposed. A presented automaton model of cosmological computing explains the cyclical and harmonious evolution of matter-energy essence, and also a space-time form of the Universe.
A spherical actuator is a novel electric device that can achieve 2/3-DOF rotational motions in a single joint with electric power input. It has advantages such as compact structure, low mass/moment of inertia, fast response and non-singularities within the workspace. It has promising applications in robotics, automobile, manufacturing, medicine and aerospace industry. This is the first monograph that introduces the research on spherical actuators systematically. It broadens the scope of actuators from conventional single-axis to multi-axis, which will help both beginners and researchers to enhance their knowledge on electromagnetic actuators. Generic analytic modeling methods for magnetic field and torque output are developed, which can be applied to the development of other electromagnetic actuators. A parametric design methodology that allows fast analysis and design of spherical actuators for various applications is proposed. A novel non-contact high-precision 3-DOF spherical motion sensing methodology is developed and evaluated with experiments, which shows that it can achieve one order of magnitude higher precision than conventional methods. The technologies of nondimensionalization and normalization are introduced into magnetic field analysis the first time, and a benchmark database is established for the reference of other researches on spherical actuators.
System Modeling and Optimization XX deals with new developments in
the areas of optimization, optimal control and system modeling. The
themes range across various areas of optimization: continuous and
discrete, numerical and analytical, finite and infinite
dimensional, deterministic and stochastic, static and dynamic,
theory and applications, foundations and case studies. Besides some
classical topics, modern areas are also presented in the
contributions, including robust optimization, filter methods,
optimization of power networks, data mining and risk control.
Safety critical and high-integrity systems, such as industrial plants and economic systems can be subject to abrupt changes - for instance due to component or interconnection failure, and sudden environment changes etc. Combining probability and operator theory, Discrete-Time Markov Jump Linear Systems provides a unified and rigorous treatment of recent results for the control theory of discrete jump linear systems, which are used in these areas of application. The book is designed for experts in linear systems with Markov jump parameters, but is also of interest for specialists in stochastic control since it presents stochastic control problems for which an explicit solution is possible - making the book suitable for course use. From the reviews: "This text is very well written...it may prove valuable to those who work in the area, are at home with its mathematics, and are interested in stability of linear systems, optimal control, and filtering." Journal of the American Statistical Association, December 2005
Recent advancements in Lyapunov-based design and analysis techniques have applications to a broad class of engineering systems, including mechanical, electrical, robotic, aerospace, and underactuated systems. This book provides a practical yet rigorous development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation. Features include: * Control designs for a broad class of engineering systems * Presentation of adaptive and learning control methods for uncertain nonlinear systems * Experimental testbed descriptions and results that guide the reader toward techniques for further research * Development of necessary mathematical background in each chapter; additional mathematical prerequisites contained in two appendices Intended for readers who have some knowledge of undergraduate systems theory, the book includes a wide range of applications making it suitable for an extensive audience. Graduate students and researchers in control systems, robotics, and applied mathematics, as well as professional engineers will appreciate the work s combination of theoretical underpinnings and current and emerging engineering applications."
This book collects the lectures given at the NATO Advanced Study Institute From Identijication to Learning held in Villa Olmo, Como, Italy, from August 22 to September 2, 1994. The school was devoted to the themes of Identijication, Adaptation and Learning, as they are currently understood in the Information and Contral engineering community, their development in the last few decades, their inter connections and their applications. These titles describe challenging, exciting and rapidly growing research areas which are of interest both to contral and communication engineers and to statisticians and computer scientists. In accordance with the general goals of the Institute, and notwithstanding the rat her advanced level of the topics discussed, the presentations have been generally kept at a fairly tutorial level. For this reason this book should be valuable to a variety of rearchers and to graduate students interested in the general area of Control, Signals and Information Pracessing. As the goal of the school was to explore a common methodologicalline of reading the issues, the flavor is quite interdisciplinary. We regard this as an original and valuable feature of this book."
This book gives a unified treatment of classical input-output stability theory and recent developments in nonlinear robust and passivity-based control. The synthesis between these areas is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this vantage-ground. The connection between L2-gain and passivity via scattering is detailed.The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasizing the close relations with modeling and control by interconnection. Feedback equivalence to a passive system and resulting stabilization strategies are discussed.The potential of L2-gain techniques in nonlinear control is demonstrated, including a compact treatment of the nonlinear H optimal control problem. This book supplies the reader with a succinct, informative summary of a fundamental and rapidly developing area of nonlinear control theory.
This book provides a unified collection of important, recent results for the design of robust controllers for uncertain systems. Most of the results presented are based on H? control theory, or its stochastic counterpart, risk sensitive control theory.Central to the philosophy of the book is the notion of an uncertain system. Uncertain systems are considered using several different uncertainty modeling schemes. These include norm bounded uncertainty, integral quadratic constraint (IQC) uncertainty and a number of stochastic uncertainty descriptions. In particular, the authors examine stochastic uncertain systems in which the uncertainty is outlined by a stochastic version of the IQC uncertainty description.For each class of uncertain systems covered in the book, corresponding robust control problems are defined and solutions discussed.
This book focuses on solving different types of time-varying problems. It presents various Zhang dynamics (ZD) models by defining various Zhang functions (ZFs) in real and complex domains. It then provides theoretical analyses of such ZD models and illustrates their results. It also uses simulations to substantiate their efficacy and show the feasibility of the presented ZD approach (i.e., different ZFs leading to different ZD models), which is further applied to the repetitive motion planning (RMP) of redundant robots, showing its application potential.
Increasing complexity in engineering projects raises difficult challenges in industry and requires effective tools for correct-by-construction design or design verification. This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits.Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings. Applications of the methods presented are emphasized by considering various concurrency assumptions and types of system uncontrollability and unobservability. Also considered is the supervision problem for decentralized settings and hybrid dynamical systems. All proposed methods are fully worked-out, ready to use, and formally proven in a sound setting. design are also given. The work is self-contained and includes necessary background on Petri nets and supervision. Requiring only basic knowledge of undergraduate-level discrete mathematics, the text is accessible to a broad audience. Researchers and developers from various engineering fields may find effective means to reduce the complexity of design problems in the discrete-event setting. Graduate students may use the work as a self-study reference, and portions of the text may be used in advanced courses on discrete-event systems.
This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis-faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, home devices like washing machines is as well as in such advanced devices as space probes and systems for communicating with them. All these technologies are part of technological backbone of our civilization, making further research and hi-tech applications essential. The rich variety of contributions appeals to a wide audience, including researchers, students and academics.
The primary aim of this volume is to provide researchers and engineers from both academic and industry with up-to-date coverage of new results in the field of robotic welding, intelligent systems and automation. The book is mainly based on papers selected from the 2019 International Workshop on Intelligentized Welding Manufacturing (IWIWM'2019) in USA. The articles show that the intelligentized welding manufacturing (IWM) is becoming an inevitable trend with the intelligentized robotic welding as the key technology. The volume is divided into four logical parts: Intelligent Techniques for Robotic Welding, Sensing of Arc Welding Processing, Modeling and Intelligent Control of Welding Processing, as well as Intelligent Control and its Applications in Engineering. |
You may like...
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,856
Discovery Miles 38 560
Recent Developments in Automatic Control…
Yuriy P. Kondratenko, Vsevolod M. Kuntsevich, …
Hardcover
R3,084
Discovery Miles 30 840
AI 2041 - Ten Visions for Our Future
Kai-Fu Lee, Chen Qiufan
Paperback
|