![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
This book presents the concept of cognition in a clear, lucid and highly comprehensive style. It provides an in-depth analysis of mathematical models and algorithms, and demonstrates their application with real life experiments.
This volume describes new frontiers in medical and service robotics in the light of recent developments in technology to advance robot design and implementation. In particular, the work looks at advances in design, development and implementation of contemporary surgical, rehabilitation and biorobots. Surgical robots allow surgeons greater access to areas under operation using more precise and less invasive methods. Rehabilitation robots facilitate and support the lives of the infirm, elderly people, or those with dysfunction of body parts affecting movement. These robots are also used for rehabilitation and related procedures, such as training and therapy. Biorobots are designed to imitate the cognition of humans and animals. The need to substitute humans working on delicate, tiresome and monotonous tasks, or working with potentially health-damaging toxic materials, requires intelligent, high-performance service robots with the ability to cooperate, advanced communication and sophisticated perception and cognitive capabilities. Progress in this field is fast and results need to be disseminated to stimulate both practical applications and further research. Thus, these papers are a valuable addition to existing literature.
This book describes the design, mathematical modeling, control system development and experimental validation of a versatile mobile pipe inspection robot. It also discusses a versatile robotic system for pipeline inspection, together with an original, adaptable tracked mobile robot featuring a patented motion unit. Pipeline inspection is a common field of application for mobile robots because the monitoring of inaccessible, long and narrow pipelines is a very difficult task for humans. The main design objective is to minimize the number of robots needed to inspect different types of horizontal and vertical pipelines, with both smooth and rough surfaces. The book includes extensive information on the various design phases, mathematical modeling, simulations and control system development. In closing, the prototype construction process and testing procedures are presented and supplemented with laboratory and field experiments.
This monograph presents a wider spectrum of researches, developments, and case specific studies in the area of smart power systems and integration of renewable energy systems. The book will be for the benefit of a wider audience including researchers, postgraduate students, practicing engineers, academics, and regulatory policy makers. It covers a wide range of topics from fundamentals, and modelling and simulation aspects of traditional and smart power systems to grid integration of renewables; Micro Grids; challenges in planning and operation of a smart power system; risks, security, and stability in smart operation of a power system; and applied research in energy storage.
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.
This book deals with the class of singular systems with random abrupt changes also known as singular Markovian jump systems. Various problems and their robustness are tackled. The book examines both the theoretical and practical aspects of the control problems from the angle of the structural properties of linear systems. It can be used as a textbook as well as a reference for researchers in control or mathematics with interest in control theory.
A mobile agent is a software program with the capability to suspend its execution and resume it on another computer. Agents are a relatively recent development in computer science, which have become a popular and useful methodology for the modelling and implementation of distributed systems, particularly those consisting of a number of largely autonomous components. The extensive use of multi-agent systems in various areas including information management, industrial control and manufacturing systems, suggests that the multi-agent systems methodology may also be appropriate for the design of power system automation systems. IP Network-based Multi-agent Systems for Industrial Automation: Information Management, Condition Monitoring and Control of Power Systems is the first book to present an introduction to the use of the Internet protocol suite and multi-agent systems for the information management, online monitoring and control of distributed power system substations. It proposes an open architecture for information management and control, based on the concepts of multi-agent systems and mobile agents. In this book, mobile agents are applied to the retrieval and analysis of substation data, and to remote operator intervention. This book also describes a prototype implementation of the architecture, in the form of a substation information management system, which has been demonstrated and evaluated using a substation simulator. The architecture is also evaluated theoretically with respect to its performance, modifiability, functionality and reliability. As mobile agent technologies are in the early stages the real applications of these technologies are rare; IPNetwork-based Multi-agent Systems for Industrial Automation: Information Management, Condition Monitoring and Control of Power Systems will be an excellent reference for postgraduates, researchers and academics in engineering and computer science, as well as engineers in system automation and managers in distributed industrial systems.
This book presents the latest results on predictive control of networked systems, where communication constraints (e.g., network-induced delays and packet dropouts) and cyber attacks (e.g., deception attacks and denial-of-service attacks) are considered. For the former, it proposes several networked predictive control (NPC) methods based on input-output models and state-space models respectively. For the latter, it designs secure NPC schemes from the perspectives of information security and real-time control. Furthermore, it uses practical experiments to demonstrate the effectiveness and applicability of all the methods, bridging the gap between control theory and practical applications. The book is of interest to academic researchers, R&D engineers, and graduate students in control engineering, networked control systems and cyber-physical systems.
This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, because integer-order PID regulators are, undoubtedly, the controllers most frequently adopted in industry. The second part of the book deals with a more general approach to fractional control systems, extending techniques (such as H-infinity optimal control and optimal input-output inversion based control) originally devised for classical integer-order control. Advances in Robust Fractional Control will be a useful reference for the large number of academic researchers in fractional control, for their industrial counterparts and for graduate students who want to learn more about this subject.
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are interested in their detection and removal. However, there exists the second kind of outliers. Quite often strange looking data observations are not artificial data occurrences. They may be just representatives of the underlying generation mechanism being inseparable internal part of the process (endogenous outliers). In such a case they are not wrong and should be treated with cautiousness, as they may include important information about the dynamic nature of the process. As such they cannot be neglected nor simply removed. The Outlier should be detected, labelled and suitably treated. These activities cannot be performed without proper analytical tools and modeling approaches. There are dozens of methods proposed by scientists, starting from Gaussian-based statistical scoring up to data mining artificial intelligence tools. The research presented in this book presents novel approach incorporating non-Gaussian statistical tools and fractional calculus approach revealing new data analytics applied to this important and challenging task. The proposed book includes a collection of contributions addressing different yet cohesive subjects, like dynamic modelling, classical control, advanced control, fractional calculus, statistical analytics focused on an ultimate goal: robust and outlier-proof analysis. All studied problems show that outliers play an important role and classical methods, in which outlier are not taken into account, do not give good results. Applications from different engineering areas are considered such as semiconductor process control and monitoring, MIMO peltier temperature control and health monitoring, networked control systems, and etc.
Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as hardware of Multi-Locomotion Robotic system. It is useful for students and researchers in the field of robotics in general, bio-inspired robots, multi-modal locomotion, legged walking, motion control, and humanoid robots. Furthermore, it is also of interest for lecturers and engineers in practice building systems cooperating with humans.
Verification presents the most time-consuming task in the
integrated circuit design process. The increasing similarity
between implementation verification and the ever-needed task of
providing vectors for manufacturing fault testing is tempting many
professionals to combine verification and testing efforts.
This volume presents the latest academic research and industrial applications in the area of mechanisms, robotics and dynamics. Contributions cover such topics as biomedical applications, control issues of mechanical systems, dynamics of multi-body systems, experimental mechanics, haptic systems, history of mechanism science, industrial and non-industrial applications, linkages and cams, mechanical transmissions and gears, mechanics of robots and manipulators, theoretical kinematics. Resulting from the 7th European Conference on Mechanism Science, which was held at RWTH Aachen University on September 4-6, 2018, this works comprises an overview on current research activities across Europe. .
This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the "real world" system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.
Fuzzy Algorithms for Control gives an overview of the research results of a number of European research groups that are active and play a leading role in the field of fuzzy modeling and control. It contains 12 chapters divided into three parts. Chapters in the first part address the position of fuzzy systems in control engineering and in the AI community. State-of-the-art surveys on fuzzy modeling and control are presented along with a critical assessment of the role of these methodologists in control engineering. The second part is concerned with several analysis and design issues in fuzzy control systems. The analytical issues addressed include the algebraic representation of fuzzy models of different types, their approximation properties, and stability analysis of fuzzy control systems. Several design aspects are addressed, including performance specification for control systems in a fuzzy decision-making framework and complexity reduction in multivariable fuzzy systems. In the third part of the book, a number of applications of fuzzy control are presented. It is shown that fuzzy control in combination with other techniques such as fuzzy data analysis is an effective approach to the control of modern processes which present many challenges for the design of control systems. One has to cope with problems such as process nonlinearity, time-varying characteristics for incomplete process knowledge. Examples of real-world industrial applications presented in this book are a blast furnace, a lime kiln and a solar plant. Other examples of challenging problems in which fuzzy logic plays an important role and which are included in this book are mobile robotics and aircraft control. The aim of this book is to address both theoretical and practical subjects in a balanced way. It will therefore be useful for readers from the academic world and also from industry who want to apply fuzzy control in practice.
This book presents the latest scientific research related to the field of Robotics. It involves different topics such as biomedicine, energy efficiency and home automationand robotics. The book is written bytechnical experts and researchers from academia and industry working on robotics applications. The book could be used as supplementary material for courses related to Robotics and Domotics. "
This book presents the most recent advances in the research and applications of reconfigurable mechanisms and robots. It collects 93 independently reviewed papers presented at the Third ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR 2015) held in Beijing, China, 20-22 July 2015. The conference papers are organized into seven parts to cover the reconfiguration theory, topology, kinematics and design of reconfigurable mechanisms including reconfigurable parallel mechanisms. The most recent results on reconfigurable robots are presented including their analysis, design, simulation and control. Bio-inspired mechanisms are also explored in the challenging fields of rehabilitation and minimally invasive surgery. This book further addresses deployable mechanisms and origami-inspired mechanisms and showcases a wide range of successful applications of reconfigurable mechanisms and robots. Advances in Reconfigurable Mechanisms and Robots II should be of interest for researchers, engineers and postgraduate students in mechanical engineering, electrical engineering, computer science and mathematics.
This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs. The author additionally investigates acceleration, jerk, and hyper-jerk analyses of rigid-bodies following the trend of the velocity analysis. With the material provided in this book, readers can extend the theory of screws into the kinematics of optional order of rigid-bodies. Illustrative examples and exercises to reinforce learning are provided. Of particular note, the kinematics of emblematic parallel manipulators, such as the Delta robot as well as the original Gough and Stewart platforms are revisited applying, in addition to the theory of screws, new methods devoted to simplify the corresponding forward-displacement analysis, a challenging task for most parallel manipulators.
This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes, acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to new and interesting results. The next part considers problems of solutions and approximations of non-integer order equations and systems. The final and most extensive part is devoted to applications. Problems from mechatronics, biomedical engineering, robotics and others are all analyzed and solved with tools from fractional systems. This volume came to fruition thanks to high level of talks and interesting discussions at RRNR 2013 - 5th Conference on Non-integer Order Calculus and its Applications that took place at AGH University of Science and Technology in Krakow, Poland, which was organized by the Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering.
The book is concerned with contemporary methodologies used for automatic text summarization. It proposes interesting approaches to solve well-known problems on text-summarization using computational intelligence (CI) techniques including cognitive approaches. A better understanding of the cognitive basis of the summarization task is still an open research issue, an extent of its use in text summarization is highlighted for further exploration. With the ever-growing text and people on research has little time to spare for extensive reading, where, summarized information helps for a better understanding of the context at a shorter time. This book helps students and researchers to automatically summarize the text documents in an efficient and effective way. The computational approaches and the research techniques presented guides to achieve text summarization at ease. The summarized text generated supports readers to learn the context or the domain at a quicker pace. The book is presented with reasonable amount of illustrations and examples convenient for the readers to understand and implement for their use. The book is not to make readers understand what text summarization is, but for people to perform text summarization using various approaches. This also describes measures that can help to evaluate, determine and explore the best possibilities for text summarization to analyse and use for any specific purpose. The illustration is based on social media and healthcare domain, which shows the possibilities to work with any domain for summarization. The new approach for text summarization based on cognitive intelligence is presented for further exploration in the field.
Designed to offer an accessible set of case studies and analyses of ethical dilemmas in data science. This book will be suitable for technical readers in data science who want to understand diverse ethical approaches to AI.
The idea of optimization runs through most parts of control theory. The simplest optimal controls are preplanned (programmed) ones. The problem of constructing optimal preplanned controls has been extensively worked out in literature (see, e. g., the Pontrjagin maximum principle giving necessary conditions of preplanned control optimality). However, the concept of op timality itself has a restrictive character: it is limited by what one means under optimality in each separate case. The internal contradictoriness of the preplanned control optimality ("the better is the enemy of the good") yields that the practical significance of optimal preplanned controls proves to be not great: such controls are usually sensitive to unregistered disturbances (includ ing the round-off errors which are inevitable when computer devices are used for forming controls), as there is the effect of disturbance accumulation in the control process which makes controls to be of little use on large time inter vals. This gap is mainly provoked by oversimplified settings of optimization problems. The outstanding result of control theory established in the end of the first half of our century is that controls in feedback form ensure the weak sensitivity of closed loop systems with respect to "small" unregistered internal and external disturbances acting in them (here we do not need to discuss performance indexes, since the considered phenomenon is of general nature). But by far not all optimal preplanned controls can be represented in a feedback form."
This book presents research on informational and mathematical aspects of networked sensing systems. It brings together internationally reputed researchers from different communities, focused on the common theme of distributed sensing, inferencing, and control over networks. The timeliness of the book is evidenced by the explosion of several independent special sessions devoted to specific aspects of sensor networks in reputed international conferences. |
![]() ![]() You may like...
Applied Mathematical Models and…
Vladimir Ivanovitch Kodolov, Mikhail A. Korepanov
Paperback
R2,498
Discovery Miles 24 980
Fractured Fairy Tales for Student Actors…
Jan Peterson Ewen
Paperback
Natural Resource-Based Development in…
Nathan Andrews, J. Andrew Grant, …
Hardcover
R1,877
Discovery Miles 18 770
|