![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering > Automatic control engineering
The rapid advances in performance and miniaturisation in microtechnology are constantly opening up new markets for the programmable logic controller (PLC). Specially designed controller hardware or PC-based controllers, extended by hardware and software with real-time capability, now control highly complex automation processes. This has been extended by the new subject of "safe- related controllers," aimed at preventing injury by machines during the production process. The different types of PLC cover a wide task spectrum - ranging from small network node computers and distributed compact units right up to modular, fau- tolerant, high-performance PLCs. They differ in performance characteristics such as processing speed, networking ability or the selection of I/O modules they support. Throughout this book, the term PLC is used to refer to the technology as a whole, both hardware and software, and not merely to the hardware architecture. The IEC61131 programming languages can be used for programming classical PLCs, embedded controllers, industrial PCs and even standard PCs, if suitable hardware (e.g. fieldbus board) for connecting sensors and actors is available.
Many process control books focus on control design techniques, taking the construction of a process model for granted. Process Modelling for Control concentrates on the modelling steps underlying a successful design, answering questions like: How should I carry out the identification of my process in order to obtain a good model? How can I assess the quality of a model with a view to using it in control design? How can I ensure that a controller will stabilise a real process sufficiently well before implementation? What is the most efficient method of order reduction to facilitate the implementation of high-order controllers? Different tools, namely system identification, model/controller validation and order reduction are studied in a framework with a common basis: closed-loop identification with a controller that is close to optimal will deliver models with bias and variance errors ideally tuned for control design. As a result, rules are derived, applying to all the methods, that provide the practitioner with a clear way forward despite the apparently unconnected nature of the modelling tools. Detailed worked examples, representative of various industrial applications, are given: control of a mechanically flexible structure; a chemical process; and a nuclear power plant. Process Modelling for Control uses mathematics of an intermediate level convenient to researchers with an interest in real applications and to practising control engineers interested in control theory. It will enable working control engineers to improve their methods and will provide academics and graduate students with an all-round view of recent results in modelling for control.
Large scale optical mapping methods are in great demand among scientists who study different aspects of the seabed, and have been fostered by impressive advances in the capabilities of underwater robots in gathering optical data from the seafloor. Cost and weight constraints mean that low-cost ROVs usually have a very limited number of sensors. When a low-cost robot carries out a seafloor survey using a down-looking camera, it usually follows a predefined trajectory that provides several non time-consecutive overlapping image pairs. Finding these pairs (a process known as topology estimation) is indispensable to obtaining globally consistent mosaics and accurate trajectory estimates, which are necessary for a global view of the surveyed area, especially when optical sensors are the only data source. This book contributes to the state-of-art in large area image mosaicing methods for underwater surveys using low-cost vehicles equipped with a very limited sensor suite. The main focus has been on global alignment and fast topology estimation, which are the most challenging steps in creating large area image mosaics. This book is intended to emphasise the importance of the topology estimation problem and to present different solutions using interdisciplinary approaches opening a way to further develop new strategies and methodologies.
Advances in science and technology necessitate the use of increasingly-complicated dynamic control processes. Undoubtedly, sophisticated mathematical models are also concurrently elaborated for these processes. In particular, linear dynamic control systems iJ = Ay + Bu, y E M C ]Rn, U E ]RT, (1) where A and B are constants, are often abandoned in favor of nonlinear dynamic control systems (2) which, in addition, contain a large number of equations. The solution of problems for multidimensional nonlinear control systems en counters serious difficulties, which are both mathematical and technical in nature. Therefore it is imperative to develop methods of reduction of nonlinear systems to a simpler form, for example, decomposition into systems of lesser dimension. Approaches to reduction are diverse, in particular, techniques based on approxi mation methods. In this monograph, we elaborate the most natural and obvious (in our opinion) approach, which is essentially inherent in any theory of math ematical entities, for instance, in the theory of linear spaces, theory of groups, etc. Reduction in our interpretation is based on assigning to the initial object an isomorphic object, a quotient object, and a subobject. In the theory of linear spaces, for instance, reduction consists in reducing to an isomorphic linear space, quotient space, and subspace. Strictly speaking, the exposition of any mathemat ical theory essentially begins with the introduction of these reduced objects and determination of their basic properties in relation to the initial object."
This book is written in a clear and thorough way to cover both the traditional and modern uses of Artificial Intelligence and soft computing. It gives an in-depth look at mathematical models, algorithms, and real-world problems that are hard to solve in MATLAB. The book is intended to provide a broad and in-depth understanding of fuzzy logic controllers, genetic algorithms, neural networks, and hybrid techniques such as ANFIS and the GA-ANN model. Key Features: A detailed description of basic intelligent techniques(Fuzzy logic, Genetic algorithm & neural network using MATLAB) A detailed description of the hybrid intelligent technique: Adaptive fuzzy inference technique(ANFIS) Formulation of the nonlinear model like Analysis of ANOVA & Response Surface Methodology Variety of solved problem on ANOVA & RSM Case studies of above mentioned intelligent techniques on the different process control system This book can be used as a handbook and a guide for students of all engineering disciplines, operational research areas, computer applications, and for various professionals who work in the optimization area.
"Control of Complex Systems: Structural Constraints and Uncertainty" focuses on control design under information structure constraints, with a particular emphasis on large-scale systems. The complexity of such systems poses serious computational challenges and severely restricts the types of feedback laws that can be used in practice. This book systematically addresses the main issues, and provides a number of applications that illustrate potential design methods, most which use Linear Matrix Inequalities (LMIs), which have become a popular design tool over the past two decades. Authors Aleksandar I. Zecevic and Dragoslav D. Siljak use their years of experience in the control field to also:
"Control of Complex Systems: Structural Constraints and Uncertainty" will appeal to practicing engineers, researchers and students working in control design and other related areas.
The articles of this book were reported and discussed at the fifth international symposium on Advances in Robot Kinematics. As is known, the first symposium of this series was organised in 1988 in Ljubljana. The following meetings took place every other year in Austria, Italy, and Slovenia (Linz, Ferrara, Ljubljana, Portoroz Bernardin). It must be emphasised that the symposia run under the patronage of the International Federation for the Theory of Machinesand Mechanisms, IFToMM. In this period, Advances in Robot Kinematics has been able to attract the most outstanding authors in the area and also to create an optimum combination of a scientific pragmatism and a friendly atmosphere. Hence, it has managed to survive in a strong competition of many international conferences and meetings. In the most ancient way, robot kinematics is regarded as an application of the kinematics of rigid hodies. However, there are topics and problems that are typical for robot kinematics that cannot easily be found in any other scientific field. It is our belief that the initiative of Advances in Robot Kinematics has contributed to develop a remarkable scientific community. The present book is of interest to researchers, doctoral students and teachers, engineers and mathematicians specialising in kinematics of robots and mechanisms, mathematical modelling, simulation, design, and control of robots."
Give, and it shall be given unto you. ST. LUKE, VI, 38. The book is based on several courses of lectures on control theory and appli cations which were delivered by the authors for a number of years at Moscow Electronics and Mathematics University. The book, originally written in Rus sian, was first published by Vysshaya Shkola (Higher School) Publishing House in Moscow in 1989. In preparing a new edition of the book we planned to make only minor changes in the text. However, we soon realized that we like many scholars working in control theory had learned many new things and had had many new insights into control theory and its applications since the book was first published. Therefore, we rewrote the book especially for the English edition. So, this is substantially a new book with many new topics. The book consists of an introduction and four parts. Part One deals with the fundamentals of modern stability theory: general results concerning stability and instability, sufficient conditions for the stability of linear systems, methods for determining the stability or instability of systems of various type, theorems on stability under random disturbances."
China Satellite Navigation Conference (CSNC 2022) Proceedings presents selected research papers from CSNC 2022 held during 25th-27th May, 2022 in Beijing, China. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 10 topics to match the corresponding sessions in CSNC2022 which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.
Wind energy systems are central contributors to renewable energy generation, and their technology is continuously improved and updated. Without losing sight of theory, Control of Large Wind Energy Systems demonstrates how to implement concrete control systems for modern wind turbines, explaining the reasons behind choices and decisions. This book provides an extended treatment of different control topics divided into three thematic parts including modelling, control and implementation. Solutions for real-life difficulties such as multi-parameter tuning of several controllers, curve fitting of nonlinear power curves, and filter design for concrete signals are also undertaken. Examples and a case study are included to illustrate the parametrization of models, the control systems design with problems and possible solutions. Advice for the selection of control laws, calculation of specific parameters, which are necessary for the control laws, as the sensitivity functions, is given, as well as an evaluation of control performance based on indices and load calculation. Control of Large Wind Energy Systems covers methodologies which are not usually found in literature on this topic, including fractional order PID and nonlinear PID for pitch control, peak shaving control and extremum seeking control for the generator control, yaw control and shutdown control. This makes it an ideal book for postgraduate students, researchers and industrial engineers in the field of wind turbine control. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
This book, dedicated to Professor Georgi M. Dimirovski on his anniversary, contains new research directions, challenges, and many relevant applications related to many aspects within the broadly perceived areas of systems and control, including signal analysis and intelligent systems. The project comprises two volumes with papers written by well known and very active researchers and practitioners. The first volume is focused on more foundational aspects related to general issues in systems science and mathematical systems, various problems in control and automation, and the use of computational and artificial intelligence in the context of systems modeling and control. The second volume is concerned with a presentation of relevant applications, notably in robotics, computer networks, telecommunication, fault detection/diagnosis, as well as in biology and medicine, and economic, financial, and social systems too.
This book offers a complete and detailed introduction to the theory of discrete dynamical systems, with special attention to stability of fixed points and periodic orbits. It provides a solid mathematical background and the essential basic knowledge for further developments such as, for instance, deterministic chaos theory, for which many other references are available (but sometimes, without an exhaustive presentation of preliminary notions). Readers will find a discussion of topics sometimes neglected in the research literature, such as a comparison between different predictions achievable by the discrete time model and the continuous time model of the same application. Another novel aspect of this book is an accurate analysis of the way a fixed point may lose stability, introducing and comparing several notions of instability: simple instability, repulsivity, and complete instability. To help the reader and to show the flexibility and potentiality of the discrete approach to dynamics, many examples, numerical simulations, and figures have been included. The book is used as a reference material for courses at a doctoral or upper undergraduate level in mathematics and theoretical engineering.
Control theory, an interdisciplinary concept dealing with the behaviour of dynamical systems, is an important but often overlooked aspect of physics. This is the first broad and complete treatment of the topic tailored for physicists, one which goes from the basics right through to the most recent advances. Simple examples develop a deep understanding and intuition for the systematic principles of control theory, beyond the recipes given in standard engineering-focused texts. Up-to-date coverage of control of networks and complex systems, and a thorough discussion of the fundamental limits of control, including the limitations placed by causality, information theory, and thermodynamics are included. In addition it explores important recent advances in stochastic thermodynamics on the thermodynamic costs of information processing and control. For all students of physics interested in control theory, this classroom-tested, comprehensive approach to the topic with online solutions and further materials delivers both fundamental principles and current developments.
This text is an introduction to the use of control in distributed power generation. It shows the reader how reliable control can be achieved so as to realize the potential of small networks of diverse energy sources, either singly or in coordination, for meeting concerns of energy cost, energy security and environmental protection. The book demonstrates how such microgrids, interconnecting groups of generating units and loads within a local area, can be an effective means of balancing electrical supply and demand. It takes advantage of the ability to connect and disconnect microgrids from the main body of the power grid to give flexibility in response to special events, planned or unplanned. In order to capture the main opportunities for expanding the power grid and to present the plethora of associated open problems in control theory Control and Optimization of Distributed Generation Systems is organized to treat three key themes, namely: system architecture and integration; modelling and analysis; and communications and control. Each chapter makes use of examples and simulations and appropriate problems to help the reader study. Tools helpful to the reader in accessing the mathematical analysis presented within the main body of the book are given in an appendix. Control and Optimization of Distributed Generation Systems will enable readers new to the field of distributed power generation and networked control, whether experienced academic migrating from another field or graduate student beginning a research career, to familiarize themselves with the important points of the control and regulation of microgrids. It will also be useful for practising power engineers wishing to keep abreast of changes in power grids necessitated by the diversification of generating methods.
The objective of the book is to provide materials to demonstrate the development of TOPSIS and to serve as a handbook. It contains the basic process of TOPSIS, numerous variant processes, property explanations, theoretical developments, and illustrative examples with real-world cases. Possible readers would be graduate students, researchers, analysts, and professionals who are interested in TOPSIS, a distance-based algorithm, and who would like to compare TOPSIS with other MCDM methods. The book serves as a research reference as well as a self-learning book with step-by-step illustrations for the MCDM community.
By proposing and forming a mobile manipulator for modern multi-floor buildings, A Robotic Framework for the Mobile Manipulator: Theory and Application helps readers visualize an end-to-end workflow for making a robot system work in a targeted environment. From a product-oriented viewpoint, this book is considered as a bridge from theories to real products, in which robotic software modules and the robotic system integration are mainly concerned. In the end, readers will have an overview of how to build and integrate various single robotic modules to execute a list of designed tasks in the real world, as well as how to make a robot system work independently, without human interventions. With references and execution guidelines provided at the end of each chapter, the book will be a useful tool for developers and researchers looking to expand their knowledge about the robotics and the robotic software.
This is an introduction to optimal control theory for systems governed by vector ordinary differential equations, up to and including a proof of the Pontryagin Maximum Principle. Though the subject is accessible to any student with a sound undergraduate mathematics background. Theory and applications are integrated with examples, particularly one special example (the rocket car) which relates all the abstract ideas to an understandable setting. The authors avoid excessive generalization, focusing rather on motivation and clear, fluid explanation.
Intended as an introduction to robot mechanics for students of mechanical, industrial, electrical, and bio-mechanical engineering, this graduate text presents a wide range of approaches and topics. It avoids formalism and proofs but nonetheless discusses advanced concepts and contemporary applications. It will thus also be of interest to practicing engineers. The book begins with kinematics, emphasizing an approach based on rigid-body displacements instead of coordinate transformations; it then turns to inverse kinematic analysis, presenting the widely used Pieper-Roth and zero-reference-position methods. This is followed by a discussion of workplace characterization and determination. One focus of the discussion is the motion made possible by sperical and other novel wrist designs. The text concludes with a brief discussion of dynamics and control. An extensive bibliography provides access to the current literature.
This book collects the main results of the Advanced Grant project RoDyMan funded by the European Research Council. As a final demonstrator of the project, a pizza-maker robot was realized. This represents a perfect example of understanding the robot challenge, considering every inexperienced person's difficulty preparing a pizza. Through RoDyMan, the opportunity was to merge all the acquired competencies in advancing the state of the art in nonprehensile dynamic manipulation, which is the most complex manipulation task, considering deformable objects. This volume is intended to present Ph.D. students and postgraduates working on deformable object perception and robot manipulation control the results achieved within RoDyMan and propose cause for reflection of future developments. The RoDyMan project culminating with this book is meant as a tribute to Naples, the hosting city of the project, an avant-garde city in robotics technology, automation, gastronomy, and art culture.
Direct Digital Control Systems: Application * Commissioning offers an insightful examination of the critical role of the DDC system in the commissioning process. Included is solid coverage of microprocessor-based control systems combined with the protocols and procedures needed to effectively integrate DDC system validation into systems commissioning. This field handbook is an everyday reference on Direct Digital Control for commissioning personnel. Whether designer, contractor, air balancer, technician, vendor, commissioning agent, owner, operator or student, increasing one's knowledge of DDC control systems will directly improve project performance.
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.
The purpose of this book is to familiarize the reader with all aspects of electrical drives. It contains a comprehensive user-friendly introductory text.
Takes an interdisciplinary approach to contribute to the ongoing development of human-AI interaction. Current debate and development of AI is "algorithm-driven" or technical-oriented in lieu of human-centered. At present, there is no systematic interdisciplinary discussion to effectively deal with issues and challenges arising from AI. This book offers critical analysis of the logic and social implications of algorithmic processes. Reporting from the processes of scientific research, the results can be useful for understanding the relationship between algorithms and humans, allowing AI designers to assess the quality of the meaningful interactions with AI systems.
Networked control systems (NCS) consist of sensors, actuators and controllers the operations of which may be distributed over geographically disparate locations and co-ordinated by the exchange of information passed over a communication network. The communication network may be physically wired or not. The widespread applications of the Internet have been a major driving force for research and development of NCS. NCS have advantages in terms of cost reduction, system diagnosis and flexibility, minimizing wiring and making the addition and replacement of individual elements relatively simple; efficient data sharing makes taking globally intelligent control decisions easier with an NCS. The applications of NCS are very wide, from the large scale of factory automation and plant monitoring to the smaller but complicated networks of computers in modern cars, places and autonomous robots. Networked Control Systems presents the most recent results in stability and robustness analysis as well as new developments related to networked fuzzy and optimal control. Many of the chapters contain details of case-studies, experimental, simulation and/or other application-related work showing how the theories put forward can be implemented in real systems. The state-of-the art research reported in this volume by an international team of contributors will make Networked Control Systems an essential reference for researchers and postgraduate students in control, electrical, computer and mechanical engineering and computer science.
This book presents a comprehensive overview of Unmanned Arial Vehicles (UAV) and their integration of wireless communications and networks, including inherent challenges and open access concerns. The authors present the latest technologies associated with UAV-assisted wireless communications and networks by linking their association with 5G Wireless Networks. The authors include positioning of UAV, coagulation attack of UAV, and the green prospective of UAV communication systems. The book explains how the UAV can be integrated with 5G wireless schemes such as ultra-reliable, low density communications, full duplex, and non-orthogonal multiple access (NOMA) for 5G. This book targets graduate students, researchers, and industry personnel. |
You may like...
Optimization of Manufacturing Systems…
Yingfeng Zhang, Fei Tao
Paperback
Adex Optimized Adaptive Controllers and…
Juan M. Martin-Sanchez, Jose Rodellar
Hardcover
R3,902
Discovery Miles 39 020
Closing The Gap - The Fourth Industrial…
Tshilidzi Marwala
Paperback
Artificial Intelligence in Real-Time…
Y.-H. Pao, S.R. LeClair
Paperback
R2,020
Discovery Miles 20 200
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
|