![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > Bacteriology
This volume presents a collection of methods that have contributed to the current understanding of bacterial persisters. Chapters in the book detail general guidelines for measuring persister levels in bacterial cultures, strategies to enrich and resuscitate persister subpopulations, single-cell approaches for visualizing and characterizing persisters, omics techniques and cellular and animal models for studying persistence. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacterial Persistence: Methods and Protocols, Second Edition aims to be a useful practical guide to researchers to help further their study in this field.
The field of bacterial diagnostics has seen unprecedented advances in recent years. The increased need for accurate detection and identification of bacteria in human, animal, food, and environmental samples has fueled the development of new techniques. The field has seen extensive research aided by the information from bacterial genome sequencing projects. Although traditional methods of bacterial detection and identification remain in use in laboratories around the world, there is now a growing trend toward the use of nucleic ac- based diagnostics and alternative biochemically and immunologically based formats. The ultimate goal of all diagnostic tests is the accurate detection, identification, or typing of microorganisms in samples of interest. Although the resulting information is of obvious use in the areas of patient management, animal health, and quality control, it is also of use in monitoring routes of infection and outlining strategies for infection control. There is, therefore, a need to ensure that the information being provided is of the highest standard and that any new technique is capable of delivering this.
Spirochetes comprise a fascinating group of bacteria. Although diverse in terms of their habitat, ecology and infectivity for vertebrate and non-vertebrate hosts, they are often considered together because of their similar cellular morphologies. This volume brings together an international group of experts to provide essential insights into spirochete biology, with an emphasis on recent advances made possible by the availability of genome sequences. As such, it offers a valuable resource for microbiologists and other scientists with an interest in spirochete biology.
Expert scientists critically review the current and most recent advances in the genomics and molecular biology of mycobacteria. The focus is on the topical and most relevant aspects and the authors aim to give readers an insight into the current understan
The book compiles the latest studies on microorganisms thriving in extreme conditions. Microbes have been found in extremely high and low temperatures, highly acidic to saline conditions, from deserts to the Dead sea, from hot-springs to underwater hydrothermal vents- the diversity is incredible. The various chapters highlight the microbial life and describe the mechanisms of tolerance to these harsh conditions, and show how an understanding of these phenomena can help us exploit the microbes in biotechnology. The theme of the book is highly significant since life in these environments can give vital clues about the origin and evolution of life on earth, as a lot of these conditions simulate the environment present billions of years ago. Additionally, the study of adaptation and survival of organisms in such environments can be important for finding life on other planets. This book shall be useful for students, researchers and course instructors interested in evolution, microbial adaptations and ecology in varied environments.
Beginning with the basics of lactic acid bacteria and stress response, then working into specific fields of research and current developments, "Stress Responses of Lactic Acid Bacteria" will serve as an essential guidebook to researchers in the field, industry professionals, and advanced students in the area. The exploration of stress responses in lactic acid bacteria began in the early 90s and revealed the differences that exist between LAB and the classical model microorganisms. A considerable amount of work has been performed on the main genera / species of LAB regarding the genes implicated and their actual role and regulation, and the mechanisms of stress resistance have also been elucidated. Recent genome and transcriptome analyses complement the proteome and genetic information available today and shed a new light on the perception of and the responses to stress by lactic acid bacteria.
Magnetotactic bacteria (MTB) synthesize intracellular nano-sized minerals of magnetite and/or greigite magnetosomes for magnetic orientation. They play important roles in global iron cycling and sedimentary magnetism, and have a broad range of potential applications in both biotechnological and biomedical fields. However, because the majority of MTB in nature remain unculturable, our understanding of these specific bacteria remains fairly limited. This thesis describes the development of a novel approach for effectively collecting, purifying and characterizing uncultivated magnetotactic bacteria. The diversity, genomic information and rock magnetic properties of various uncultivated MTB are investigated and characterized using a combination of biological and geophysical methods. The results will lead to a better understanding of the biogeography and biomineralization mechanisms of MTB in nature, and improve our knowledge of the contributions of MTB to biogeochemical cycles of elements and sedimentary magnetism. Dr. Wei Lin works at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China
Pseudomonas volume 7 collects some of the most relevant and emerging issues in the biology of these microorganisms, and a number of other important issues that were not collected in the previous volumes. The first six volumes of the Pseudomonas series covered the biology of pseudomonads in a wide range of contexts, including the niches they inhabit, the taxonomic relations among its members of this group, the molecular biology of gene expression in different niches and under different environmental conditions, the analysis of virulence in plants, animal and human pathogens, as well as the determinants that make some of these strains of interesting for biotechnological applications. This seventh volume covers the following topics: The history of the biology of Pseudomonas The use of Pseudomonas as biological agents New trends in the molecular biology of these microorganisms Pseudomonas and the immune system of insects and animals This book will be of use to researchers working on these bacteria, particularly those studying medical aspects of Pseudomonas, and their use as a means to control pathogens or to stimulate plant growth. This volume is also interesting for those studying the physiology, genetics, molecular biology of Pseudomonas and those using novel-omics approaches to understand bacteria of the genus Pseudomonas.
Detailed information dealing with the ecology of mycobacteria is derived from a variety of different scientific fields such as botany, biochemistry, genetics, immunology, microbiology and epidemiology. This text attempts to evaluate this information from an ecological point of view and to develop a strategy for the prevention of tuberculosis and other mycobacterioses based on the ecological behaviour of mycobacteria, especially the potentially pathogenic species capable of either growth in the environment or provoking disease. Regarding the interests of the developing countries, special attention is paid to the ecology of Mycobacterium leprae and to the supporting effect of accompanying mycobacteria in its pathogenicity. On a more positive side, environmental mycobacteria play an important role in the ecology of moorland dragonflies.
Since its early days in the 1990s, the Quorum Sensing (QS) field has grown from a few dozen laboratories, investigating the pathways, proteins, and chemicals that facilitate signaling in bacteria, to hundreds of groups that have integrated evolutionary biology, computer science, mathematics, engineering, and metagenomics to create an ever-expanding and dynamic field. In Quorum Sensing: Methods and Protocols, expert researchers provide an in-depth set of diverse protocols that span this broad area of study. Broken into three detailed sections, the volume covers the detection, isolation, and characterization of the QS signals made by both Gram- and Gram+ bacteria, determination of the function of QS signals in vivo, and the development of QS disruption strategies. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert tips on troubleshooting and avoiding known experimental pitfalls. Comprehensive and cutting-edge, Quorum Sensing: Methods and Protocols serves as an invaluable collection of easily accessible techniques for scientists seeking to further our knowledge about bacterial communication and its relation to humanity.
Legionella is a deadly pneumonia that has a high mortality rate among the elderly. The detailed protocols outlined in this new book in the 'Methods in Molecular Biology' series will extend our understanding of the bacterium and aid its elimination from our water supplies.
This manual reflects practical approaches to handling bacteria in the labora- tory. It is designed to recall historical methods of bacterial genetics that have had recent developments and to present new techniques that allow full genome analysis. It has been written for microbiologists who need to group their protocols at the state of the art of a new millennium and also for scientists in other fields of life sciences who need to use bacteria for their research. Teachers, graduate students, and postdocs also will benefit from having these protocols to help them understand modern bacterial genetics. I learned so much from these contributions from my colleagues that I have no doubt about the daily usefulness of this book. April 2002 Michel Blot XII Abbreviations Acyl-HSL N-acyl homoserine lactone moi multiplicity of infection Amp or Ap ampicillin N amino C carboxy NMR nuclear magnetic resonance CIO-HSL N-decanoyl-L-homoserine lactone 3-0H-C14:1-HSL N-(3-hydroxy-7 -cis-tetra- C12-HSL N-dodecanoyl-L-homoserine lac- decanoyl)homo-serine lactone tone 3-0H-C4-HSL N-3-hydroxybutanoyl-L- C14-HSL N-tetradecanoyl-L-homoserine homoserine lactone lactone ONPG o-nitrophenyl ~-D-galactopyranoside C4-HSL N-butanoyl-L-homoserine lactone ORF open reading frame C6-HSL N-hexanoyl-L-homoserine lactone OTG I-S-octyl-~-D-thioglucoside C8-HSL N-octanoyl-L-homoserine lactone 3-oxo-CIO-HSL N-3-oxodecanoyl-L-homo- Cam or Cm chloramphenicol serine lactone CBD chitin binding domain 3-oxo-C12-HSL N-3-oxododecanoyl-L- CHEF contour clamped homogenous electric homoserine lactone field 3-oxo-C14-HSL N-3-oxotetradecanoyl-L- CI consistency index homoserine lactone CRIM conditional-replication, integration, 3-oxo-C4-HSL N-3-oxobutanoyl-L-homoser- and modular ine lactone dCTP deoxycytidine triphosphate 3-oxo-C6-HSL N-3 -oxohexanoyl-L-homoser- deg.
The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. ""Bacteria in Agrobiology: Stress Management"" covers the major aspects on PGPR in amelioration of both abiotic and biotic stresses. PGPR mediated in priming of plant defense reactions, nutrient availability and management in saline and cold environment, hormonal signaling, ACC deaminase and its role in ethylene regulation under harsh conditions are suitably described.
Microbial plant pathogens causing qualitative and quantitative losses in all corps are present not only in the infected plants, but also in the environmental comprising of soil, water and air. The vectors present in the environment spread the microbial pathogens to short and/or long distances. Detection of microbial pathogens rapidly and reliably by employing suitable sensitive applicable for different ecosystems. The pathogens have to be identified precisely and differentiated and quantified to plan appropriate short- and long-term strategies to contain the incidence and spread of diseases induced by them. This book aims to present all relevant and latest information on the detection techniques based on the biological, biochemical, immunological and nucleic acid characteristics of microbial pathogens presents in the host plants, as well as in the natural substrates that support the survival and perpetuation of the pathogens.
Bacillus anthracis causes anthrax in all mammals, including humans. Depending upon the route of entry of B. anthracis spores, infection can result in cutaneous lesions, which are readily treatable with antibiotics, or systemic lethal disease, which is nearly always fatal. The continuing worldwide incidence of anthrax in animal populations, the risk of human infection associated with animal outbreaks, and the threat of use of B. anthracis as a biological weapon warrant continued investigation of this organisms and its virulence mechanims. Furthermore, B. anthracis is an excellent model system for inverstigation of virulence gene expression by bacteria.
Bacteria pathogenic for plants are responsible for devastating losses in agriculture. The use of antibiotics to control such infections is restricted in many countries due to worries over the evolution and transmission of antibiotic resistance. The advent of genome sequencing has enabled a better understanding, at the molecular level, of the strategies and mechanisms of pathogenesis, evolution of resistance to plant defense mechanisms, and the conversion of non-pathogenic into pathogenic bacteria. In this book, internationally acclaimed experts review the most important developments, providing an invaluable up-to-date summary of the molecular biology and genomics of plant pathogenic bacteria. The book opens with two chapters on bacterial evolution, diversity, and taxonomy - topics that have been transformed by molecular biology and genomics analyses. The third chapter delves into the crucially understudied area of pathogen adaptation to the plant apoplast environment. The next seven chapters focus on specific plant pathogens: Agrobacterium, Leifsonia, Pectobacterium, Pseudomonas, Ralstonia, Xanthomonas, and Xylella. The following four chapters review specific, intensively studied areas of research in the plant pathogen field: microbe associated molecular patterns (MAMPs) and innate immunity; use of bacterial virulence factors to suppress plant defense; cyclic di-GMP signalling and the regulation of virulence; and plasmids and the spread of virulence. The final chapter covers the critical area of bioinformatics. With contributions from some of the pioneering bacterial plant pathogen genome sequencers, this book is essential reading for every plant pathogen researcher - from the PhD student to the experienced scientist - as it provides a timely review of the current and most topical areas of research.
Updated and revised, this thorough volume provides a selection of the newest methods, as well as some of the basic methods required for a mycobacterial research laboratory. Mycobacteria Protocols, Third Edition guides readers through fractionation and analysis of macromolecules, from nucleic acids to proteins, complex lipids, and metabolites. Detailed and comprehensive protocols are provided for protein and lipid/glycolipid analysis using well-established methods; these are now complemented by a metabolomics chapter in which the complement of metabolites can be profiled. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Mycobacteria Protocols, Third Edition will be a resource both to those working in the field and to newcomers.
Mollicutes are a class of simple bacteria characterised by the lack of a bacterial wall and their very small genomes (500 kb to 2200 kb). Acknowledged experts critically review the most recent advances in the evolution, genetics and molecular pathogenesis of these important pathogens.
This collection of diverse articles by the pioneers of modern genomics takes stock of the current state of the field and elucidates the contribution that sequencing genomes has made to our understanding of microbial metabolism and evolution. Through twenty-eight thought-provoking chapters, the authors describe some of the most common computational methods and their applications to studying pathogenic microorganisms, show how genomics can be used to reconstruct the history and dynamism of the microbial world, and discuss issues as diverse as reconstruction of metabolic pathways, cell cycle processes, microbial evolution, metagenomics, and vaccine development. Additional chapters deal with microarrays and expression analysis and the role of genomic in drug discovery.
During the past twenty years, multitudes of exciting discoveries in the field of anaerobic bacteria have been made. BIOCHEMISTRY AND PHYSIOLOGY OF ANAEROBIC BACTERIA explores the full range of these microorganisms. Many anaerobes have been found to have the uniquely fascinating quality of being able to survive, indeed even thrive, in extreme environments. Anaerobic bacteria often do not require oxygen, can survive extremes in temperature, and can withstand the presence of toxins and heavy metals. In addition, these organisms have very different metabolic processes than "conventional" microorganisms. The wide diversity of metabolism in anaerobes is only part of the story. They have distinct energies, cytochromes, electron transport proteins, hydrogenases and dohydrogenases. Their molecular biology, physiology, and ability to use many types of electron receptors (CO2, sulfur, nitrogen and metal oxides) are also extraordinary. With practical applications ranging from wastewater treatment to food storage issues, clinical diagnosis and treatment of a wide range of medical conditions to decontamination of heavy metal exposures BIOCHEMISTRY AND PHYSIOLOGY OF ANAEROBIC BACTERIA will prove indispensable to researchers and students alike.
Beginning with an introduction to relevant genetic techniques, chapters cover all major groups of LAB, including the Bifidobacteria; plasmid biology, gene transfer, phage, and sugar metabolism; gene expression of various LAB; applications for genetically engineered LAB, including the emerging field of medical applications; and the legal and consumer issues that arise from such applications. This resource will set the benchmark for the state of knowledge of LAB genetics and should be of value to food scientists and other researchers working with LAB in its present and future capacities. Professionals using lactic acid bacteria (LAB) for research and/or as working organisms, whether in food and dairy fermentations or in the exciting new field of clinical delivery agents, will find this book invaluable. In addition, professors teaching under- and post-graduates in microbiology, and postgraduate research students will also find this an essential reference work.
Macrolide Antibiotics: Chemistry, Biochemistry, and Practice,
Second Edition explores the discovery of new macrolide antibiotics,
their function, and their clinical use in diseases such as cancer,
AIDS, cystic fibrosis and pneumonia. This book discusses the
creation of synthetic macrolides and the mechanisms of antibiotic
activity. The uses for antimicrobial macrolides in clinical
practice are also covered. This book is designed to appeal to both
the basic and applied research communities interested in
microbiology, bacteriology, and antibiotic/antifungal research and
treament.
Network-based representations have become pervasive in most fields in biology. Bacterial Molecular Networks: Methods and Protocols provides authoritative descriptions of various experimental and computational methods enabling the characterization and analysis of molecular interaction networks, with a focus on bacteria. Divided into three convenient sections, this volume provides extensive coverage of various experimental and in silico approaches aiming at the characterization of network components, addresses the presentation of computational approaches to analyze the topology of molecular networks, and further introduces a variety of methods and tools enabling scientists to generate qualitative or quantitative dynamical models of molecular processes in bacteria. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Bacterial Molecular Networks: Methods and Protocols is intended primarily for post-graduate students and researchers working in the field of experimental and computational microbiology and provides a combination of up-to-date reviews along with detailed protocols written by the developers of bioinformatics resources, such as databases and software tools.
The bacterium Escherichia coli – E. coli for short – has long been the organism of choice for unraveling biochemical pathways, deciphering the genetic code, learning how DNA is replicated and read, and even for manufacturing proteins of commercial interest. For some thirty years, it also has been a model for studying the molecular biology of behavior. E. coli swims in a purposeful manner, propelled by long thin helical filaments, each driven at its base by a reversible rotary engine. As a microscopic organism immersed in an aqueous environment, it has mastered physical constraints utterly different from any that we know, devising sensors, comparators, and motors on the nanometer scale. This cross-disciplinary monograph describes these feats in a manner accessible to scientists, engineers, and others not trained in microbiology who would like to learn more about living machines. It treats the history of the subject, the physiology, physics, biochemistry and genetics, largely from first principles. It is all about a small but remarkably sophisticated friend who lives in your gut. Topics discussed include: How does E. coli move about? How do cells decide whether life is getting better or worse? What is the machinery that makes this behavior possible? How is the construction of this machinery programmed? How does this machinery work? What remains to be discovered?
Vaccines represent the greatest achievements of one area of science for increasing our health and well-being. This collection of papers represents the latest advances in bacterial vaccine research. The papers presented at this symposium illustrate the increasing potential and need for continuing research into disease pathogenesis, host resistance mechanisms, and vaccine development. Further, the study of bacterial vaccines provides an important method for characterizing pathogenic mechanisms and natural and induced host resistance mechanisms. |
![]() ![]() You may like...
Viral, Parasitic, Bacterial, and Fungal…
Debasis Bagchi, Amitava Das, …
Paperback
R3,556
Discovery Miles 35 560
Molecular Medical Microbiology
Yi-Wei Tang, Musa Hindiyeh, …
Mixed media product
R15,508
Discovery Miles 155 080
Lactic Acid Bacteria and Bifidobacteria…
Kenji Sonomoto, Atsushi Yokota
Hardcover
R5,855
Discovery Miles 58 550
Omics Science for Rhizosphere Biology
Ramesh Namdeo Pudake, Binod Bihari Sahu, …
Hardcover
R5,229
Discovery Miles 52 290
Helicobacter Pylori - New Approaches of…
Bruna Maria Roesler
Hardcover
R3,382
Discovery Miles 33 820
Lactic Acid Bacteria - Microbiological…
Gabriel Vinderola, Arthur Ouwehand, …
Hardcover
R7,830
Discovery Miles 78 300
|