![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > Bacteriology
The importance of fungal infections in both human and animals has increased over the last few decades. This book presents an overview of the different categories of fungal infections that can be encountered in animals (including lower vertebrates) originating from environmental sources with or without transmission to humans. In addition, the endemic infections with indirect transmission from the environment, the zoophilic fungal pathogens with near-direct transmission, the zoonotic fungi that can be directly transmitted from animals to humans, mycotoxicoses and antifungal resistance in animals will also be discussed. This book includes case studies and reviews the current state of knowledge on the mechanism of fungal attraction, recognition, infection, extracellular hydrolytic enzymes and pathogenesis of nematophagous fungi. The book also covers diagnostics, fungal formulations, as well as prevention methods. It discusses strategies to access the fungal pathogen groups, metagenomic analyses, genomics, secretomics, metabolomics, proteomics and transcriptomics. In addition, pathogen description, understanding, distribution and recent research results are provided.
One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into eukaryotic and prokaryotic target cells to modulate a variety of cellular functions for the pathogen's benefit. These protein-delivery machines include the type III secretion system (T3SS), which is widespread in nature and encoded not only by bacteria pathogenic to vertebrates or plants, but also by bacteria that are symbiotic to plants or insects. Because they are essential virulence factors for many important human pathogens, these systems are emerging as a prime target for the development of new-generation, anti-infective drugs. This book reviews our current understanding of these intriguing injection machines as well as of the closely related T3SS that serves in flagella assembly. Individual chapters focus on regulation, assembly, structure, and function of the type III secretion machine and on the evolution of the secreted effector proteins. Given its scope, this book will appeal to a broad readership, including researchers and teachers in the fields of infectious diseases, host pathogen interactions, plant and animal pathogenesis, and symbiosis.
This book presents a timely review of the latest advances in rhizosphere biology, which have been facilitated by the application of omics tools. It includes chapters on the use of various omics tools in rhizosphere biology, focusing on understanding plant and soil microbe interactions. The role of proteomics and metagenomics in research on symbiotic association is also discussed in detail. The book also includes chapters on the use of omics tools for the isolation of functional biomolecules from rhizospheric microorganisms. The book's respective sections describe and provide detailed information on important omics tools, such as genomics, transcriptomics, proteomics, metabolomics and meta-epigenomics. In turn, the book promotes and describes the combined use of plant biology, microbial ecology, and soil sciences to design new research strategies and innovative methods in soil biology. Lastly, it highlights the considerable potential of the rhizosphere in terms of crop productivity, bioremediation, ecological engineering, plant nutrition and health, as well as plant adaptation to stress conditions. This book offers both a practical guide and reference source for all scientists working in soil biology, plant pathology, etc. It will also benefit students studying soil microbiology, and researchers studying rhizosphere structure.
This book examines an important paradigm shift in biology: Plants and animals, traditionally viewed as individuals, are now considered to be complex systems and host to a plethora of microorganisms. After first presenting historical aspects of microbiota research, bacterial compositions of individual microbiomes and the critical analysis of current methods, the book discusses how microbial communities inside the human body are profoundly affected by numerous factors, such as macro- and micro-nutrients, physical exercise, antibiotics, gender and age. As described by current research, the author highlights how microbiomes contribute to the fitness of the host by providing nutrients, inhibiting pathogens, aiding in the storage of fat during pregnancy, and contributing to development and behavior. The author not only focusses on prokaryotic components in microbiomes, but also addresses single-cell eukaryotes and viruses. This follow-up to the successful book The Hologenome Concept: Human, Animal and Plant Microbiota, published in 2013, provides a contemporary overview of microbiomes. It appeals to anyone working in the life sciences and biomedicine.
This comprehensive laboratory manual describes the various protocols involved in Actinobacterial research. The content is divided into fifteen major sections, each of which is further divided into sub-sections describing the respective aim, principles, materials & methods, protocol, expected results and diagrams. Readers will find essential protocols for e.g. sample collection, isolation, characterization, analysis, profiling and evaluation of Actinobacteria for various applications. Gathering all relevant protocols concerning Actinobacteria, and written by a team of experienced Actinobacterial researchers, it is the first book of its kind.
This book explores the broad and diverse biological and physiological impacts of established and newly discovered cyclic di-nucleotide second messenger signaling systems, while also providing descriptions of the intriguing biochemical characteristics of multiple turnover enzymes and receptors. The respective chapters discuss the commonalities and diversity of cyclic di-GMP, cyclic di-AMP and recently discovered cyclic GMP-AMP signaling systems in manifold Gram-negative and Gram-positive bacteria. The global human pathogens Mycobacterium tuberculosis, Vibrio cholerae, Salmonella typhimurium, Escherichia coli and Streptococcus pneumoniae, the facultative human pathogen Pseudomonas aeruginosa, global plant pathogens as exemplified by Xanthomonas campestris and Burkholderia spp., and the omnipresent probiotic Lactobacilli, as well as environmentally important photoautotrophic cyanobacteria, the multicellular Myxococcus xanthus, and chemolithotrophic Acidithiobacillus are among the representatives of the microbial kingdom that are described. In turn, the various aspects of bacterial physiology affected by these signaling systems- e.g. biofilm formation and dispersal, the cell cycle, motility, virulence, production of antimicrobials, fundamental metabolism and osmohomeostasis - are discussed in detail in the context of different microorganisms. Dedicated chapters focus on the population diversity of cyclic dinucleotide signaling systems, their tendency to be horizontally transferred, the cyclic di-GMP signaling system in the social amoeba Dictyostelium, honorary cyclic (di)nucleotides, and the development of strategies for interfering with cyclic dinucleotide signaling in order to manipulate microbial behavior. Taken together, the chapters provide an authoritative source of information for a broad readership: beginners and advanced researchers from various disciplines; individuals seeking a broad overview of cyclic di-nucleotide signaling; and those who want to learn more about specific aspects. Also featuring reviews with a forward-looking perspective, the book offers a valuable source of inspiration for future research directions.
The book compiles the latest studies on microorganisms thriving in extreme conditions. Microbes have been found in extremely high and low temperatures, highly acidic to saline conditions, from deserts to the Dead sea, from hot-springs to underwater hydrothermal vents- the diversity is incredible. The various chapters highlight the microbial life and describe the mechanisms of tolerance to these harsh conditions, and show how an understanding of these phenomena can help us exploit the microbes in biotechnology. The theme of the book is highly significant since life in these environments can give vital clues about the origin and evolution of life on earth, as a lot of these conditions simulate the environment present billions of years ago. Additionally, the study of adaptation and survival of organisms in such environments can be important for finding life on other planets. This book shall be useful for students, researchers and course instructors interested in evolution, microbial adaptations and ecology in varied environments.
This book focuses on the multitude of functions bacterial membrane vesicles perform in bacterial ecology and pathogenesis as well as in emerging medical and biotechnological applications. Both Gram-negative and Gram-positive bacteria produce membrane-bound nanostructures, known as membrane vesicles, which have a range of functions that include serving as delivery vehicles, providing a means of communication over both spatial and temporal scales, and contributing to bacterial survival and evolution. Topics covered in this book range from the biogenesis and composition of bacterial membrane vesicles to their abundance and biological roles in microbial ecosystems, such as marine environments. In the individual chapters, the involvement of bacterial membrane vesicles in host-pathogen interactions, promoting virulence and in facilitating the establishment of infection is explained. In addition, current knowledge regarding membrane vesicles produced by commensal bacteria and their role in the maturation of the host immune system, as well as the therapeutic potential of bacterial membrane vesicles as delivery systems and innovative nanotechnology-based therapeutics are discussed. This work appeals to a wide readership of students and researchers interested in microbial ecology, mechanism underlying pathogenesis and new avenues in applied microbiology and nanotechnology.
This Microbiology Monographs volume covers the latest advances in laccase applications in bioremediation and waste valorisation. The first three chapters provide a comprehensive introduction to fungal and bacterial laccases (the two most important enzyme groups from an application viewpoint) and their practical use in bioremediation and lignocellulosic waste valorisation. Subsequent chapters discuss possible combinations of laccases and further potentially collaborating enzymes, and offer in-depth insights into laccase immobilisation for wastewater treatment and environmental biosensor applications of laccases. Lastly, the book addresses the quest for enzymes with improved and better-fitting properties, covering laccase engineering by directed and computational evolution, and novel enzymes from extreme environments. As such, it is a fascinating read for microbiologists in both industry and academia.
Pulses have played a major role in human diet and are considered a rich source of proteins. But, the major constraints in achieving the yield of pulses are the occurrences of various diseases and pests. Hence, there is a need to understand major fungal pathogens and their management strategies for sustainable agriculture. The major pulse crops in India and other Asian countries are bengal gram, pigeon pea, black gram, green gram, lentil and peas, which are attacked by several pathogens that cause considerable crop damage. Bengal gram is affected mainly by wilt (Fusarium oxysporum f. sp. ciceri), blight (Mycosphaerella pinodes) and rust (Uromyces ciceris-arietini). The main diseases of pigeon pea are wilt (Fusarium oxysporum) and Phytophtora stem blight (Phytophthora drechsleri f. sp. cajani). Powdery mildew (Erysiphe polygoni) and rust (Uromyces vicia-fabae) are the most important diseases affecting the production of pea. This volume offers details like symptoms, distribution, pathogens associated, predisposing factors and epidemiology, sources of resistance and holistic management of diseases with particular reference to those of economic importance. Several minor diseases of lentil, green gram and of black gram are discussed with their detailed and updated information. This volume provides pooled information regarding the management of major fungal phytopathogens affecting pulses.
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable cross-talk between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Thermophilic Bacteria is a comprehensive volume that describes all major bacterial groups that can grow above 60-65 DegreesC (excluding the Archaea). Over 60 different species of aerobic and anaerobic thermophilic bacteria are covered. Isolation, growth methods, characterization and identification, ecology, metabolism, and enzymology of thermophilic bacteria are examined in detail, and an extensive compilation of recent biotechnological applications and the properties of many thermostable enzymes are also included. Major topics discussed in the book include a general review on thermophilic bacteria and archaea; heterotropic bacilli; the genus Thermus; new and rare genera of aerobic heterophophs, such as Saccharococcus, Rhodothermus, and Scotohermus; aerobic chemolithoautotrophic thermophilic bacteria; obligately anaerobic thermophilic bacteria; and hyperthermophilic Thermotogales and thermophilic phototrophs. Extensive bibliographies are also provided for each chapter. The vast amount of information packed into this one volume makes it essential for all microbiologists, biochemists, molecular biologists, and students interested in the expanding field of thermophilicity. Biotechnologists will find the book useful as a source of information on thermophiles or thermostable enzymes of possible industrial use.
The book summarizes the achievements of the past decade in the biochemistry, bioenergetics, structural and molecular biology of respiratory processes in selected genera of the domain Bacteria along with an extensive coverage of the redox chains of extremophiles belonging to the Archaean domain. The volume is a unique piece of work since it contains a series of chapters dealing with metabolic features having important microbiological and ecological relevance such as the use of ammonium, iron, methane, sulfur and hydrogen as respiratory substrates or nitrous compounds in denitrification processes. Particular attention is also dedicated to peculiar groups of prokaryotes such as Gram positives, acetic acid bacteria, pathogens of the genera Helicobacter and Campylobacter, nitrogen fixing symbionts and free-living species, oxygenic phototrophs (Cyanobacteria) and anoxygenic (purple non-sulfur) phototrophs. The book is intended to be a long-term source of information for Ph.D. students, researchers and undergraduates from disciplines such as microbiology, biochemistry and ecology, studying basic and applied sciences, medicine and agriculture.
This book delves into the biotechnological applications of Quorum sensing (QS)- a peculiar gene-regulatory process of some microorganisms. Quorum Sensing allows a large bacterial population to work together in a coordinated manner to carry out metabolic activities, which individual bacterium cannot. The different chapters describe how, associating bioremediation process with energy generation is an economical proposal, for reducing pollution and managing biowastes. The book discusses how QS can be exploited for biotechnological applications in generating bioproducts, bioenergy, bioremediation, biosensors, health and agricultural activities. It further highlights how QS is becoming an integral part of synthetic biology for genetic circuits for producing: (i) novel products, (ii) biosensors, (iii) bioactive molecules, etc. The book is divided into different sections for a clear understanding of the applicability of QS in, the Environment, Energy, Agriculture and Health sectors.
Spirochetes comprise a fascinating group of bacteria. Although diverse in terms of their habitat, ecology and infectivity for vertebrate and non-vertebrate hosts, they are often considered together because of their similar cellular morphologies. This volume brings together an international group of experts to provide essential insights into spirochete biology, with an emphasis on recent advances made possible by the availability of genome sequences. As such, it offers a valuable resource for microbiologists and other scientists with an interest in spirochete biology.
During bacteriology's Golden Age (roughly 1870-1890) European physicians focused on the role of bacteria as causal agents of disease. Advances in microscopy and laboratory methodology - including the ability to isolate and identify micro-organisms - played critical roles. Robert Koch, the most well known of the European researchers for his identification of anthrax, tuberculosis and cholera, established in Germany the first teaching laboratory for training physicians in the new methods. Bacteriology was largely absent in early U.S. medical schools. Dozens of American physicians-in-training enrolled in Koch's course in Germany and many established bacteriology courses upon their return. This book highlights those who became acknowledged leaders in the field and whose work remains influential.
This book provides an essential update on the startling array of novel insecticidal toxins and drugs produced by the fascinating bacterium Photorhabdus. The respective chapters describe everything from the detailed molecular biology of the 'Toxin complexes' or Tc's to the complexity of insect immune response in relation to both the bacterium and its nematode vector. The volume covers both primary (toxin production and regulation) and secondary (natural product synthesis and regulation) metabolism and emphasises the potential use of toxins and drugs in both agriculture and medicine. It also discusses in detail two totally novel quorum sensing mechanisms and the likely role of LuxR solos in sensing the presence of different bacterial hosts. Lastly, the book explores the unique case of P. asymbiotica, which seems to have evolved the ability to infect both insects and humans. This synthesis proves that Photorhabdus truly does offer a 'gold mine' for the discovery of novel insecticidal proteins and novel natural products with potential uses in agriculture and medicine alike.
This book discusses Prosthetic Joint Infection (PJI), which remains one of the most common problems necessitating revision arthroplasty. It pursues a multidisciplinary approach, bringing together opinions from the leading experts in the field. The book identifies the potential causes of these infections, provides sound diagnostic criteria guidelines, and explains how these prosthetic infections are managed from orthopedic surgery, clinical and diagnostic perspectives. PJI can lead to multiple revision surgeries and significant patient morbidity. Periprosthetic infection rates remain around 1-2% after primary total hip and knee arthroplasty and account for approximately 7-12% of all revision cases. Orthopedic hardware infections are much-feared and costly complications that can occur when these devices are implemented both in traumatic cases as well as in joint replacement surgery. Because these infections can lead to higher morbidity, it is important to understand their pathophysiology and the principles behind their diagnosis and initial treatment. The pathogenesis of these kinds of infections is intimately connected to the biofilm-producing trait characteristic of many microorganisms, which can have a critical effect on the likely success of treatments. The book offers a unique guide for all scientists working in arthroplasty who are seeking an update on the field, and for newcomers alike.
This book summarizes the current state of knowledge concerning bacteria that use halogenated organic compounds as respiratory electron acceptors. The discovery of organohalide-respiring bacteria has expanded the range of electron acceptors used for energy conservation, and serves as a prime example of how scientific discoveries are enabling innovative engineering solutions that have transformed remediation practice. Individual chapters provide in-depth background information on the discovery, isolation, phylogeny, biochemistry, genomic features, and ecology of individual organohalide-respiring genera, including Dehalococcoides, Dehalogenimonas, Dehalobacter, Desulfitobacterium and Sulfurospirillum, as well as organohalide-respiring members of the Deltaproteobacteria. The book introduces readers to the fascinating biology of organohalide-respiring bacteria, offering a valuable resource for students, engineers and practitioners alike.
Bacterial diarrheal diseases remain an important leading cause of preventable death, especially among children under five in developing countries. In the American continent, diarrheal disease and other health complications caused by Escherichia coli constitute a major public health problem, and, therefore, several research groups have dedicated their effort to understand this pathogen and provide feasible solutions to prevent, treat and reduce E. coli infections. The Latin American Coalition for Escherichia coli Research (LACER) was created as a multidisciplinary network of international research groups working with E. coli with the ultimate goal of advancing understanding of E. coli, and to prepare the next generation of American E. coli investigators. As such, this book compiles the knowledge of these investigators about E. coli, a commensal bacteria living inside its host, and a pathogen causing disease in animals and humans. Escherichia coli in the Americas contains a series of 15 chapters written by experts, covering basic concepts regarding the different categories of E. coli, including their environmental niche, virulence mechanisms, host reservoir, and disease outcomes, as well as diagnosis, vaccine development and treatment. This book's target audience include trainees and students learning about the basic and clinical aspects of E. coli pathogenesis, as well as experts around the globe who wish to learn more about this pathogen and the public health impact this bacteria has in America.
Did You Just Eat That? provides the answers to perennial questions about food and germs, such as whether electric hand dryers spread fewer germs than paper towels or about picking a crisp off the ground within five seconds of dropping it. The authors show how they have determined everything from how much bacteria gets transferred from sharing utensils to how many microbes live on restaurant menus. They list their materials and methods, guide the reader through their results and offer explanations of food safety and microbiology. Written with humour, this fascinating book reveals surprising answers to the weirdest and most commonly debated questions about food and germs.
The genus Clostridium represents a heterogeneous group of anaerobic spore-forming bacteria, comprising prominent toxin-producing species, such as C. difficile, C. botulinum, C. tetani, and C. perfringens, in addition to well-known non-pathogens like solventogenic C. acetobutylicum. In the last decade, several clostridial genomes have been deciphered and post-genomic studies are currently underway. The advent of newly developed, genetic manipulation tools have permitted functional-based and systems biology analyses of several clostridial strains. Research in this area is at a very exciting stage. In this book, internationally recognized Clostridium experts critically review the most important aspects of clostridial research, providing the first coherent picture of the organism's molecular and cellular biology in this post-genomic era. The first major focus of the book is the genetics and molecular biology of the major clostridial toxins including: botulinum and tetanus neurotoxins, C. difficile large exotoxins, C. perfringens enterotoxin, pore-forming and binary bacterial toxins. Other topics include molecular epidemiology of C. botulinum and C. difficile, metabolic networks in C. acetobutylicum, development of genetic knock-out systems for clostridia, surface structures, anti tumor potential of clostridia, and antibiotic resistance determinants in C. difficile.
This volume reviews the current understanding of the taxonomy, disease syndromes, genetics, biology, and pathogenic factors of Histophilus somni, as well as the host immune response to this pathogen. H. somni is one of the most important bacterial pathogens in cattle and other ruminants, and its virulence factors are highly conserved with Haemophilus influenzae and other members of the Pasteurellaceae. H. somni has been recognized as a major cause of thrombotic meningoencephalitis, respiratory disease syndromes, myocarditis, reproductive disease syndromes, polyarthritis, mastitis, ocular disease, and septicemia. The only known habitats of H. somni are the mucosal surfaces of ruminants, making this bacterium an opportunistic pathogen. Although it is capable of causing inflammation at systemic sites and is toxic to epithelial and phagocytic cells, the bacterium's wide array of virulence factors act primarily as a defense against, or to escape recognition from, host innate and adaptive immunity.
This book describes modern biophysical techniques that enable us to understand and examine dynamic processes of infection at the molecular level. Cutting-edge research articles, laboratory protocols, case studies and up-to-date reviews cover topics such as single-molecule observation of DNA replication repair pathways in E. coli; evolution of drug resistance in bacteria; restriction enzymes as barriers to horizontal gene transfer in Staphylococcus aureus; infectious and bacterial pathogen biofilms; killing infectious pathogens through DNA damage; bacterial surfaces in host-pathogen interactions; bacterial gene regulation by riboswitches; transcription regulation in enterobacterial pathogens; the bacterial flagellar motor; initial surface colonization by bacteria; Salmonella Typhi host restrictions; as well as monitoring proton motive force in bacteria; microbial pathogens using digital holography; mathematical modelling of microbial pathogen motility; neutron reflectivity in studying bacterial membranes; force spectroscopy in studying infection and 4D multi-photon imaging to investigate immune responses. The focus is on the development and application of complex techniques and protocols at the interface of life sciences and physics, which increase the physiological relevance of biophysical investigations. |
![]() ![]() You may like...
Interstitial Prostate Brachytherapy…
Gyoergy Kovacs, Peter Hoskin
Hardcover
R3,634
Discovery Miles 36 340
Advances in Soft Computing - Engineering…
Jose M. Benitez, Oscar Cordon, …
Hardcover
R5,807
Discovery Miles 58 070
The Songbird & The Heart Of Stone - The…
Carissa Broadbent
Paperback
Advanced PAP Therapies and Non-invasive…
Lee Brown, Shahrokh Javaheri
Hardcover
R1,479
Discovery Miles 14 790
|