![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Microbiology (non-medical) > Bacteriology
This book introduces Planctomycetes bacteria and deals in detail with their unusual structure, physiology, genomics and evolutionary significance. It is a definitive summary of recent knowledge of this important distinctive group of bacteria, microorganisms which challenge our very concept of the bacterium. Planctomycetes, and their relatives within the PVC superphylum of domain Bacteria, including verrucomicrobia and chlamydia, challenge our classical concept of the bacterium and its modes of life and provide new experimental models for exploring evolutionary cell biology and the full diversity of how living cells can be organized internally. Unique among bacteria, they include species possessing cells with intracellular membrane-bounded compartments and a peptidoglycan-less cell wall, and bacteria such as the anammox organisms performing unique anaerobic ammonium oxidation significant for global nitrogen cycle.
This book describes the various applications of microorganisms in improving plant growth, health and the efficiency of phytochemical production. The chapters trace topics such as the role of PGPRs in improving salt stress and heavy metal tolerance in plants; the prevention and control of plant diseases; boosting soil fertility and agriculture productivity; the induction of secondary metabolite biosynthesis in medicinal and aromatic plants; the enhancement of phytochemical levels, and the action mechanisms, diversity and characterization of PGPRs. The reviews will be of interest for scientists in the fields of agriculture, microbiology, soil biology, plant breeding and herbal medicinal products.
The book summarizes the achievements of the past decade in the biochemistry, bioenergetics, structural and molecular biology of respiratory processes in selected genera of the domain Bacteria along with an extensive coverage of the redox chains of extremophiles belonging to the Archaean domain. The volume is a unique piece of work since it contains a series of chapters dealing with metabolic features having important microbiological and ecological relevance such as the use of ammonium, iron, methane, sulfur and hydrogen as respiratory substrates or nitrous compounds in denitrification processes. Particular attention is also dedicated to peculiar groups of prokaryotes such as Gram positives, acetic acid bacteria, pathogens of the genera Helicobacter and Campylobacter, nitrogen fixing symbionts and free-living species, oxygenic phototrophs (Cyanobacteria) and anoxygenic (purple non-sulfur) phototrophs. The book is intended to be a long-term source of information for Ph.D. students, researchers and undergraduates from disciplines such as microbiology, biochemistry and ecology, studying basic and applied sciences, medicine and agriculture.
The genus Clostridium represents a heterogeneous group of anaerobic spore-forming bacteria, comprising prominent toxin-producing species, such as C. difficile, C. botulinum, C. tetani, and C. perfringens, in addition to well-known non-pathogens like solventogenic C. acetobutylicum. In the last decade, several clostridial genomes have been deciphered and post-genomic studies are currently underway. The advent of newly developed, genetic manipulation tools have permitted functional-based and systems biology analyses of several clostridial strains. Research in this area is at a very exciting stage. In this book, internationally recognized Clostridium experts critically review the most important aspects of clostridial research, providing the first coherent picture of the organism's molecular and cellular biology in this post-genomic era. The first major focus of the book is the genetics and molecular biology of the major clostridial toxins including: botulinum and tetanus neurotoxins, C. difficile large exotoxins, C. perfringens enterotoxin, pore-forming and binary bacterial toxins. Other topics include molecular epidemiology of C. botulinum and C. difficile, metabolic networks in C. acetobutylicum, development of genetic knock-out systems for clostridia, surface structures, anti tumor potential of clostridia, and antibiotic resistance determinants in C. difficile.
Ein biographischer Abriss zu Robert Koch, dem Begrunder der Bakteriologie in Deutschland. Der Band wertet den in Vergessenheit geratenen Nachlass aus und ermoeglicht eine neue Sicht auf die Person und den Arbeitsstil des Nobelpreistragers. Er enthalt zudem erstmals einen vollstandigen Katalog der Dokumente zum Lebenslauf und damit verbundener Auszeichnungen, Arbeitsmaterialien und der Briefe Robert Kochs. Fur Bibliothekare und Archive ist das Werk auch wegen der Bestandsnachweise und Erschliessungskriterien ein unverzichtbares Arbeitsmittel.
This book describes the various applications of microorganisms in improving plant growth, health and the efficiency of phytochemical production. The chapters trace topics such as the role of PGPRs in improving salt stress and heavy metal tolerance in plants; the prevention and control of plant diseases; boosting soil fertility and agriculture productivity; the induction of secondary metabolite biosynthesis in medicinal and aromatic plants; the enhancement of phytochemical levels, and the action mechanisms, diversity and characterization of PGPRs. The reviews will be of interest for scientists in the fields of agriculture, microbiology, soil biology, plant breeding and herbal medicinal products.
The type I interferon (IFN) signaling pathway is well recognized as a pathway activated by viral infections. It is activated by a variety of microbial pattern recognition receptors including the Toll-like receptors, NOD-like receptors and several cytosolic receptors. Activation of the type I IFN pathway leads to the production of both antiviral factors and products that influence immune cell function. More recently it has been shown that bacteria are also capable of activating this pathway. Bacterial Activation of Type I Interferons reviews both the current understanding of how different bacterial species are able to activate this pathway as well as the influence type I IFNs have on the outcome to infection. Several different bacterial species are covered, spanning Gram positive and Gram negative, intracellular, extracellular, and different host infection sites. An introduction to the pathogenesis of each organism is provided, and the signaling molecules involved in the activation of the type I IFN pathway and the role it plays in animal infection models are also covered.
The aim of this book is to provide readers with a wide overview of the main healthcare-associated infections caused by bacteria and fungi able to grow as biofilm. The recently acquired knowledge on the pivotal role played by biofilm-growing microorganisms in healthcare-related infections has given a new dynamic to detection, prevention and treatment of these infections in patients admitted to both acute care hospitals and long-term care facilities. Clinicians, hygienists and microbiologists will be updated by leading scientists on the state-of-art of biofilm-based infections and on the most innovative strategies for prevention and treatment of these infections, often caused by emerging multidrug-resistant biofilm-growing microorganisms.
Plants form mutualistic association with various microorganisms, particularly in the rhizosphere region. The association benefits both the partners in a number of ways. A single plant can support the growth of diverse microbes and in reciprocation these microbes help the plant in several ways. A great deal of knowledge is now available on the mechanisms of action of plant growth promoting microbes in forming association with their partner plant and benefitting it. With ever increasing population and to achieve food security it has become utmost necessary to utilize these friendly microbes to enhance the crop yield and quality in an ecofriendly and sustainable manner. We already know about the huge negative impact of chemicals used in agriculture on the humans and the ecosystems as whole. ‘Plant Microbes Symbiosis – Applied Facets’ provides a comprehensive knowledge on practical, functional and purposeful utility of plant-microbe interactions. The book reviews the utilization of beneficial microbes for crop yield enhancement and protection against diseases caused by phytopathogens and nutrient deficiencies. The tome also reviews the utility of plant growth promoting microbes in helping the plants to deal with abiotic stresses imposed by climate change and anthropogenic activities. The book showcases how plant-microbe interactions are or can be utilized for reclamation of stressed soils and degradation of pollutants in a most effective and environment friendly manner. It also ascertains the reasons for the below par performance of the microbial based inoculants. The utilization of biotechnological tools for development of next generation bioformulations to combat the new challenges and overcome past hurdles has been discussed. This wonderful association between plants and microbes if used properly will not only enhance the crop yields and reclaim barren lands but also make our planet a better place to live on for all of its habitants.
This book provides readers with information on the factors underlying the emergence of infectious diseases originating in animals and spreading to people. The One Health concept recognizes the important links between human, animal, and environmental health and provides an important strategy in epidemic mitigation and prevention. The essential premise of the One Health concept is to break down the silos among the different health professions and promote transdisciplinary collaborations. These concepts are illustrated with in-depth analyses of specific zoonotic agents and with examples of the successes and challenges associated with implementing One Health. The book also highlights some of the challenges societies face in confronting several specific zoonotic diseases. A chapter is included on comparative medicine to demonstrate the broad scope of the One Health concept. Edited by a team including the One Health Initiative pro bono members, the book is dedicated to those studying zoonotic diseases and comparative medicine in both human and veterinary medicine, to those involved in the prevention and control of zoonotic infections and to those in the general public interested in the visionary field of One Health.
Salmonella: Methods and Protocols, Second Edition expands upon the previous edition with current, detailed methods on different aspects and landmarks advancing knowledge on salmonella research. With new chapters on molecular assays for detection, identification and serotyping of salmonella, quantitative proteomic identification of host factors involved in salmonella infection, determination of antimicrobial resistance in salmonella, site-directed mutagenesis, chromosomal gene analysis, development of bacterial nanoparticle vaccine, attachment of nanoparticle cargo to biotinylated salmonella for combination bacteriotherapy against tumors, various microscopy methods to analyze salmonella interaction with host cells, in vitro modeling of gallbladder-associated salmonella colonization, and analysis of salmonella phages and prophages. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Salmonella: Methods and Protocols, Second Edition present methods that are of value to investigators in the salmonella field.
Quorum sensing (QS) describes a chemical communication behavior that is nearly universal among bacteria. Individual cells release a diffusible small molecule (an autoinducer) into their environment. A high concentration of this autoinducer serves as a signal of high population density, triggering new patterns of gene expression throughout the population. However QS is often much more complex than this simple census-taking behavior. Many QS bacteria produce and detect multiple autoinducers, which generate quorum signal cross talk with each other and with other bacterial species. QS gene regulatory networks respond to a range of physiological and environmental inputs in addition to autoinducer signals. While a host of individual QS systems have been characterized in great molecular and chemical detail, quorum communication raises many fundamental quantitative problems which are increasingly attracting the attention of physical scientists and mathematicians. Key questions include: What kinds of information can a bacterium gather about its environment through QS? What physical principles ultimately constrain the efficacy of diffusion-based communication? How do QS regulatory networks maximize information throughput while minimizing undesirable noise and cross talk? How does QS function in complex, spatially structured environments such as biofilms? Previous books and reviews have focused on the microbiology and biochemistry of QS. With contributions by leading scientists and mathematicians working in the field of physical biology, this volume examines the interplay of diffusion and signaling, collective and coupled dynamics of gene regulation, and spatiotemporal QS phenomena. Chapters will describe experimental studies of QS in natural and engineered or microfabricated bacterial environments, as well as modeling of QS on length scales spanning from the molecular to macroscopic. The book aims to educate physical scientists and quantitative-oriented biologists on the application of physics-based experiment and analysis, together with appropriate modeling, in the understanding and interpretation of the pervasive phenomenon of microbial quorum communication.
This book brings together many of the world's leading experts in the fields of Antarctic terrestrial soil ecology, providing a comprehensive and completely up-to-date analysis of the status of Antarctic soil microbiology. Antarctic terrestrial soils represent one of the most extreme environments on Earth. Once thought to be largely sterile, it is now known that these diverse and often specialized extreme habitats harbor a very wide range of different microorganisms. Antarctic soil communities are relatively simple, but not unsophisticated. Recent phylogenetic and microscopic studies have demonstrated that these communities have well established trophic structuring and play a significant role in nutrient cycling in these cold and often dry desert ecosystems. They are surprisingly responsive to change and potentially sensitive to climatic perturbation. Antarctic terrestrial soils also harbor specialized 'refuge'habitats, where microbial communities develop under (and within) translucent rocks. These cryptic habitats offer unique models for understanding the physical and biological 'drivers' of community development, function and evolution.
Presenting the most up-to-date techniques for the detection, genotyping, and investigation of methicillin-resistant S. aureus (MRSA), this second edition of Methicillin-Resistant Staphylococcus aureus (MRSA) Protocols collects chapters that utilize the power of complete genomic sequences and advanced high-throughput technologies that have pushed this field to its present state. These enable the development of specific and rapid diagnosis methods, the investigation and elucidation of mechanisms of bacterial evolution to antibiotic resistance and pathogenicity, and the identification of novel targets to develop more potent therapeutic and/or preventive agents. Written for the Methods in Molecular Biology series, numerous chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, Methicillin-Resistant Staphylococcus aureus (MRSA) Protocols, Second Edition serves as a key reference for researchers attempting to set up a new method to study MRSA or even for technicians and scientists working on other pathogens.
Biodegradative Bacteria highlights the novel nature of bacterial cell functions in the field of biodegradation by putting them into three parts: (1) Genetic and genomic systems, (2) Degradative enzyme systems, and (3) Bacterial behavior in natural environmental systems. The first part of the book includes cell functions as degradative machinery, genome systems for effective degradation, and the evolution of degradative systems by mobile genetic elements. The second part deals with the structure, function, evolution, diversity, and application of degradative and related enzymes. The third part presents cell or genomic behaviors of biodegradative bacteria in natural ecosystems. Bacterial metabolic capacity, which plays an important role in the global material cycle, contributes significantly to the buffering capacity for the huge and unintended release of various chemicals. Recently, however, the prosperity and globalization of material civilization has led not only to severe local contamination by hazardous chemicals, but also to continuous increment of contaminant concentrations worldwide. To solve such urgent global issues, bacterial functions that are involved in biodegradation of hazardous chemicals have been analyzed. The term "biodegradative bacteria" refers to those bacteria that have the ability to degrade such xenobiotic (man-made) and/or hazardous chemicals. Analyses of biodegradative bacteria include diverse areas of study, such as genetics, enzymology, genomics, cell physiology, ecology, and evolutionary biology. In other words, the targets investigated in research on biodegradative bacteria include single molecules, single cell systems, bacterial consortia (interaction with surrounding microorganisms), and interaction with surrounding biotic and abiotic materials. Such complexity makes the research on biodegradative bacteria difficult but quite interesting.
The aim of this book is to provide readers with a wide overview of the main healthcare-associated infections caused by bacteria and fungi able to grow as biofilm. The recently acquired knowledge on the pivotal role played by biofilm-growing microorganisms in healthcare-related infections has given a new dynamic to detection, prevention and treatment of these infections in patients admitted to both acute care hospitals and long-term care facilities. Clinicians, hygienists and microbiologists will be updated by leading scientists on the state-of-art of biofilm-based infections and on the most innovative strategies for prevention and treatment of these infections, often caused by emerging multidrug-resistant biofilm-growing microorganisms.
Corynebacterium diphtheriae is the classical etiological agent of diphtheria and the type strain of the genus Corynebacterium. While diphtheria of the respiratory tract became rare with the introduction of vaccination programs in industrialized countries, even today several thousand cases per year are reported to the World Health Organization. This shows that diphtheria is not completely eradicated and that reservoirs exist. The book summarizes the latest advances made in understanding C. diphtheriae and the closely related species Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Topics addressed are genomics of toxigenic corynebacteria, host-pathogen-interaction, detection, surveillance and treatment as well as application aspects.
Plasmids are closed, circular pieces of DNA that are able to self--replicate and are carried by many bacteria. They provide unique functions for bacteria by allowing them to sexually replicate and to pass on genetic material between each other. Plasmids are also responsible for the genetic factors that give resistance to antibiotics, and provide the enzymes needed to break down poorly metabolised food resources. The author has provided an updated treatment of the structure, function and application of plasmids suitable for undergraduates and medical students. Employing an original teaching perspective----examining plasmids as living organisms with either a symbiotic or parasitic mode of survival----this text provides an important framework for understanding the structure and function of plasmids in an evolutionary context.* The most up to date text on plasmids* An innovative teaching perspective makes for easy student understanding* Contains crucial chapters on the importance of plasmids for clinical and biological research
Due to the highly collaborative nature of investigators working in the field, we have rapidly advanced our understanding of Staphylococcus epidermidis and other staphylococci in the last two decades. The chapters in Staphylococcus Epidermidis: Methods and Protocols are designed to give the new investigator a series of tools so they can ask novel and exciting questions related to the biology of this opportunistic pathogen, as many exciting and unexplored questions such as defining the interaction of S. epidermidis and other normal flora remain to be discovered. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Staphylococcus Epidermidis: Methods and Protocols seeks to serve both professionals and novices with its well-honed methodologies.
Bacterial genomics is a mature research interdisciplinary field, which is approached by ecologists, geneticists, bacteriologists, molecular biologists and evolutionary biologists working in medical, industrial and basic science. Thanks to the large diffusion of bacterial genome analysis, Bacterial Pangenomics: Methods and Protocols is able to provide the most recent methodologies about the study of bacterial pangenomes by covering the three major areas: the experimental methods for approaching bacterial pangenomics, the bio informatic pipelines for analysis and annotation of sequence data and finally the methods for inferring functional and evolutionary features from the pangenome. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Bacterial Pangenomics: Methods and Protocols will serve as a field guide for both qualified bacterial genomics investigators who want to update their technical knowledge, for less experienced researchers who want to start working with bacterial genomics and pangenomics, as well as serving as a manual and supplemental textbook for graduate students of genomics and bioinformatics.
This book describes the growing body of information on the epidemiology, clinical manifestations, transmission, pathogenesis, diagnosis, and treatment of Kingella kingae infections in young children. In addition, it covers experimental methods that have been developed to study the microbiology, genetics, and virulence factors of K. kingae, information that provides the foundation for new approaches to treatment and prevention of K. kingae disease. With this content in mind, excerpts from the book will be of relevance for clinicians who care for pediatric patients, for clinical microbiologists who are involved in detecting organisms in clinical specimens, and for scientists who are studying K. kingae in an effort to develop novel targets for antimicrobial therapy and new approaches to prevention. First isolated in the 1960s by Elizabeth O. King, a bacteriologist at the CDC, Kingella kingae was largely ignored over the next two decades as a human pathogen because of its uncommon recovery from patients with disease. However, in recent years K. kingae has been increasingly recognized as a clinically important pathogen in young children, and is currently recognized as the leading cause of osteoarticular infections in young children in a growing number of countries. Research into this organism has grown tremendously over the past 15 years, resulting in a better appreciation of the importance of K. kingae in pediatric patients and of the molecular mechanisms of disease.
This book introduces Planctomycetes bacteria and deals in detail with their unusual structure, physiology, genomics and evolutionary significance. It is a definitive summary of recent knowledge of this important distinctive group of bacteria, microorganisms which challenge our very concept of the bacterium. Planctomycetes, and their relatives within the PVC superphylum of domain Bacteria, including verrucomicrobia and chlamydia, challenge our classical concept of the bacterium and its modes of life and provide new experimental models for exploring evolutionary cell biology and the full diversity of how living cells can be organized internally. Unique among bacteria, they include species possessing cells with intracellular membrane-bounded compartments and a peptidoglycan-less cell wall, and bacteria such as the anammox organisms performing unique anaerobic ammonium oxidation significant for global nitrogen cycle.
Host-Bacteria Interactions: Methods and Protocols details cutting edge protocols that cover aspects of the investigation of host bacteria interactions using mammalian and novel non mammalian infection models, cell biology, OMICS and bacterial genetics. Chapters focus on techniques that can be used to investigate different aspects of the physiopathology of bacterial infections, from the whole animal to tissue, cellular and molecular level. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Host-Bacteria Interactions: Methods and Protocols provide researchers with a comprehensive account of the practical steps necessary for carrying out each protocol successfully.
Microbial relationships with all life forms can be as free living, symbiotic or pathogenic. Human beings harbor 10 times more microbial cells than their own. Bacteria are found on the skin surface, in the gut and other body parts. Bacteria causing diseases are the most worrisome. Most of the infectious diseases are caused by bacterial pathogens with an ability to form biofilm. Bacteria within the biofilm are up to 1000 times more resistant to antibiotics. This has taken a more serious turn with the evolution of multiple drug resistant bacteria. Health Departments are making efforts to reduce high mortality and morbidity in man caused by them. Bacterial Quorum sensing (QS), a cell density dependent phenomenon is responsible for a wide range of expressions such as pathogenesis, biofilm formation, competence, sporulation, nitrogen fixation, etc. Majority of these organisms that are important for medical, agriculture, aquaculture, water treatment and remediation, archaeological departments are: Aeromonas, Acinetobacter, Bacillus, Clostridia, Enterococcus, Pseudomonas, Vibrio and Yersinia spp. Biosensors and models have been developed to detect QS systems. Strategies for inhibiting QS system through natural and synthetic compounds have been presented here. The biotechnological applications of QS inhibitors (QSIs) in diverse areas have also been dealt with. Although QSIs do not affect growth and are less likely to impose selective pressure on bacteria, however, a few reports have raised doubts on the fate of QSIs. This book addresses a few questions. Will bacteria develop mechanisms to evade QSIs? Are we watching yet another defeat at the hands of bacteria? Or will we be acting intelligently and survive the onslaughts of this Never Ending battle?
Streptococci are Gram-positive bacteria that cause a wide spectrum of diseases, such as pharyngitis, necrotizing fasciitis and streptococcal toxic shock syndrome, as well as rheumatic fever and rheumatic heart disease as sequelae. Antibiotics alone have not been able to control the disease and in spite of many efforts an effective vaccine is not yet available. A prerequisite for novel and successful strategies for combating these bacteria is a complete understanding of the highly complex pathogenic mechanisms involved, which are analyzed in this volume. In ten chapters, prominent authors cover various aspects including streptococcal diseases and global burden, epidemiology, adaptation and transmission, and molecular mechanisms of different diseases, as well as sequelae, vaccine development and clinical management. This book will serve as a valuable reference work for scientists, students, clinicians and public health workers and provide new approaches to meeting the challenge of streptococcal diseases. |
You may like...
How To Reboot Rebuild Reconquer 2022…
Nicola Walther, Christina Ioannidis
Paperback
R553
Discovery Miles 5 530
Combined Quantum Mechanical and…
Tatyana Karabencheva-Christova
Hardcover
R3,698
Discovery Miles 36 980
Ceramic Catalysts - Materials…
Manju Kurian, Smitha Thankachan, …
Paperback
R4,669
Discovery Miles 46 690
A Liberal Theology for the Twenty-First…
Michael J. Langford
Hardcover
R1,248
Discovery Miles 12 480
Romance of the Enclosed Garden - Song of…
Andrea Oliva Florendo
Hardcover
R717
Discovery Miles 7 170
Equality Of Opportunity: The Economics…
Francois Maniquet, Marc Fleurbaey
Hardcover
R3,300
Discovery Miles 33 000
|