Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Biochemistry
Volume 22, entitled Metal Ions in Bio-Imaging Techniques, of the series Metal Ions in Life Sciences deals with metal ions as tools in imaging. This dates back to the first half of the past century, when barium sulfate was orally given to patients undergoing X-ray examination. The use of contrast agents has since developed into a large interdisciplinary field encompassing not only medicine, but also chemistry, material sciences, physics, biology, engineering, and computer sciences. MILS-22 provides deep and current insights in 17 stimulating chapters on the new research frontiers of this fast growing field on bio-imaging ... and beyond. For example, adding bio-sensing yields theranostic agents, meaning diagnosis and therapy linked in the same molecule; ions of Gd, Mn, Fe, Co, Ir, 99mTc, etc., are involved. Other important topics are, e.g., metal complexes in paramagnetic Chemical Exchange Transfer (paraCEST), radiometals for Positron Emission Tomography (PET) imaging, or paramagnetic metal ion probes for 19F magnetic resonance imaging. MILS-22 is written by 57 internationally recognized experts from 12 countries, that is, from the US via Europe to China. The impact of this vibrant research area is manifested by more than 2300 references and nearly 120 figures, mostly in color, and several informative tables. To conclude, Metal Ions in Bio-Imaging Techniques is an essential resource for scientists working in the wide range from material sciences, enzymology, analytic, organic, and inorganic biochemistry all the way through to medicine including the clinic ... not forgetting that also excellent information for teaching is provided.
This book provides a modern and easy-to-understand introduction to the chemical equilibria in solutions. It focuses on aqueous solutions, but also addresses non-aqueous solutions, covering acid-base, complex, precipitation and redox equilibria. The theory behind these and the resulting knowledge for experimental work build the foundations of analytical chemistry. They are also of essential importance for all solution reactions in environmental chemistry, biochemistry and geochemistry as well as pharmaceutics and medicine. Each chapter and section highlights the main aspects, providing examples in separate boxes. Questions and answers are included to facilitate understanding, while the numerous literature references allow students to easily expand their studies.
This volume brings together a plethora of protocols and experimental methods used by scientists to study calpains, their inhibitors, and their substrates. It also explores bioinformatic approaches to calpain substrate identification. The chapters in this book are divided into five parts and cover topics such as production and purification of calpains; determination of calpain localization, expression, and activity; identification of calpain-activated protein function; interrogation of calpastatin; and manipulation of calpain expression. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Calpain: Methods and Protocols is a valuable resource for researchers and scientists who want to learn more about this developing field, and get inspired to make new discoveries that will aid in diagnosing and treating calpain-related diseases.
This book offers a comprehensive introduction to electron-based bioscience, biotechnology, and biocorrosion. It both explains the importance of electron flow during metabolic processes in microorganisms and provides valuable insights into emerging applications in various fields. In the opening section, readers will find up-to-date information on topics such as electron transfer reactions, extracellular electron transfer mechanisms, direct interspecies electron transfer, and electron uptake by sulfate-reducing bacteria. The focus then shifts to state-of-the-art advances and applications in the field of biotechnology. Here, the coverage encompasses e.g. progress in understanding electrochemical interactions between microorganisms and conductive particles, enzymatic reactions and their application in the bioproduction of useful chemicals, and the importance of redox balance for fatty acid production. In closing, the book addresses various aspects of the complex phenomenon of microbiologically induced corrosion, highlighting novel insights from the fields of electromicrobiology and electrochemistry and their implications.
Basic Laboratory Methods for Biotechnology, Third Edition is a versatile textbook that provides students with a solid foundation to pursue employment in the biotech industry and can later serve as a practical reference to ensure success at each stage in their career. The authors focus on basic principles and methods while skillfully including recent innovations and industry trends throughout. Fundamental laboratory skills are emphasized, and boxed content provides step by step laboratory method instructions for ease of reference at any point in the students' progress. Worked through examples and practice problems and solutions assist student comprehension. Coverage includes safety practices and instructions on using common laboratory instruments. Key Features: Provides a valuable reference for laboratory professionals at all stages of their careers. Focuses on basic principles and methods to provide students with the knowledge needed to begin a career in the Biotechnology industry. Describes fundamental laboratory skills. Includes laboratory scenario-based questions that require students to write or discuss their answers to ensure they have mastered the chapter content. Updates reflect recent innovations and regulatory requirements to ensure students stay up to date. Tables, a detailed glossary, practice problems and solutions, case studies and anecdotes provide students with the tools needed to master the content. To succeed in the lab, it is crucial to be comfortable with the math calculations that are part of everyday work. This accessible introduction to common laboratory techniques focuses on the basics, helping even readers with good math skills to practice the most frequently encountered types of problems. Basic Laboratory Calculations for Biotechnology, Second Edition discusses very common laboratory problems, all applied to real situations. It explores multiple strategies for solving problems for a better understanding of the underlying math. Primarily organized around laboratory applications, the book begins with more general topics and moves into more specific biotechnology laboratory techniques at the end. This book features hundreds of practice problems, all with solutions and many with boxed, complete explanations; plus hundreds of "story problems" relating to real situations in the lab. Additional features include: Discusses common laboratory problems with all material applied to real situations Presents multiple strategies for solving problems help students to better understand the underlying math Provides hundreds of practice problems and their solutions Enables students to complete the material in a self-paced course structure with little teacher assistance Includes hundreds of "story problems"that relate to real situations encountered in the laboratory
This book summarizes the fast-growing and current knowledge about selenium interaction with cancer, diabetes, neuro-degeneration, heart disease, muscle disorders, HIV and several more. A special focus will be placed on in-depth knowledge about gene expression, selenoprotein biosynthesis, seleno-metabolism--as well as the molecular pathways, physiological roles, and the molecular action of selenium including interaction with other elements and vitamins or as Se-nanoparticles. The reader will receive the newest information regarding redox status and redox regulatory systems, specifically in relation to different glutathione peroxidases and thioredoxin-reductases as well as about cellular bioavailability and cytotoxicity, de-balanced immune response, inflammation or dietary aspects.
This thesis describes the authors' pioneering efforts in the conceptualization and implementation of combined platinum-based immuno-chemotherapeutics, which represent a significant paradigm shift from the conventional approach of directly targeting cancer. The work described has opened up a rich and largely unexplored area for platinum-based drug design, and ultimately paves the way for superior immuno-chemotherapeutics with better clinical outcome for patients. Historically, the contribution of the immune system to chemotherapy outcomes has been neglected, as anticancer drugs were believed to be immunosuppressive. However, this has been challenged by contemporary evidence suggesting that many chemotherapeutics, including platinum-based agents, stimulate the innate and/or adaptive immune system and that these "secret allies" contribute tangibly to clinical outcomes. A multi-pronged immuno-chemotherapeutic approach not only shrinks tumors, but more importantly, reactivate dormant immune responses to malignancies, eliminating residual cancer cells.
This volume explores the latest methods used to study AMPK by computational, biochemical, biophysical, cellular, and ex vivo and in vivo approaches. The chapters in this book cover specific topics, such as methods to measure change in cellular energy metabolism and analyze metabolic pathways regulated by AMPK; bioinformatics tools to identify AMPK targets; knockdown of AMPK by CRISPR-Cas9; production and crystallization of full-length human AMP-activated protein kinase; cell-free assays to measure the effects of regulatory ligands on AMPK; use of sensors of AMPK activity; AMPK protein interaction by yeast two-hybrid; the role of AMPK in inflammation and autophagy; analyzing the AMPK function in C. elegans and mammals (with special focus on skeletal muscle, blood vessels, kidneys, pancreatic islets and hypothalamus); and human 2 AMPK mutations. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and thorough, AMPK: Methods and Protocols is a valuable resource for graduate students, postdoctoral researchers, and established investigators who are interested in the richly diverse AMPK field.
This informative book focuses on the nutritional value of potatoes and ways to improve it. With the world reeling under the burden of an ever-growing population, there is a pressing need for affordable and nutritious staples to feed the billions. Potatoes are grown in a broad range of countries around the world and can substantially contribute to future food security. Given the increasing consumption of potatoes, there is a need for a book that compiles information on and raises awareness of their nutritional value, while also encouraging their consumption. The respective chapters of this book cover the chemical composition, structure and health benefits of potatoes, as well as genetic modifications used to alter the concentration of relevant chemical compounds in them. The book provides an overview of potatoes as a nutrient-dense crop, and discusses important aspects such as the role of potatoes in human diet, how they can improve the overall health of individuals, their role in addressing malnutrition etc. Its chapters deal with topics such as carbohydrates and glycemic index, dietary fibers, vitamins, proteins, phenols, carotenoids, anthocyanins, minerals, lipids, glycoalkaloids, new health-promoting compounds, the composition and utilization of potato peel, nutritional significance of potato products, and potato probiotics. Given its scope, the book will be of interest to undergraduate students, graduate students and researchers in plant physiology and biochemistry, plant genetic engineering, the food sciences and agriculture, as well as industry partners in related fields.
This book covers the fundamental aspects of the electrochemistry and redox enzymes that underlie enzymatic bioelectrocatalysis, in which a redox enzyme reaction is coupled with an electrode reaction. Described here are the basic concept and theoretical aspects of bioelectrocatalysis and the various experimental techniques and materials used to study and characterize related problems. Also included are the various applications of bioelectrocatalysis to bioelectrochemical devices including biosensors, biofuel cells, and bioreactors. This book is a unique source of information in the area of enzymatic bioelectrocatalysis, approaching the subject from a cross-disciplinary point of view.
This book discusses the methods synthesizing various carbon materials, like graphite, carbon blacks, carbon fibers, carbon nanotubes, and graphene. It also details different functionalization and modification processes used to improve the properties of these materials and composites. From a geometrical-structural point of view, it examines different properties of the composites, such as mechanical, electrical, dielectric, thermal, rheological, morphological, spectroscopic, electronic, optical, and toxic, and describes the effects of carbon types and their geometrical structure on the properties and applications of composites.
The inflammasome is a protein complex composed of an intracellular sensor-typically a Nod-like receptor (NLR), the precursor procaspase-1, and the adaptor ASC. Inflammasome activation leads to the maturation of caspase-1 and the processing of its substrates, IL-1 and IL-18. The inflammasome has been implicated numerous diseases, and blockade of inflammasome-derived IL-1 has beneficial effects on several of these diseases. Different books have been edited about the biology of inflammasomes and about methods to study, however, the implication of this complex in the different diseases and pathological conditions show the need of a book about the clinical implications and therapeutic options. This project will show the context where inflammasomes are being studied and the molecular implications in the medical and clinical contexts. Other important topic of the inflammasomes will be the development of pharmacological inhibitors in order to improve new clinical applications. In this sense, we can find new drugs with inhibitory effects or old drugs with an inhibitory potential effect. There is a need for re-establishing the real benefits of the inflammasome inhibitions in pathological situations and the management of the differents diseases where inflammasomes are implicated.
Lipids are an integral part of cell membrane architecture, are intermediaries in cell metabolism, and are involved in transmitting cell signals from hormones, growth factors and nutrients. A number of lipases and phospholipases, lipid kinases, lipid phosphatases, sphingosine kinases, and their reaction products have been implicated in fundamental cellular processes including cell proliferation, division and migration. These enzymes and their products underlie the molecular mechanisms of numerous human diseases, in particular metabolic disease (diabetes), cancer, neurodegenerative disease and cardiovascular disease. Over the last decade, studies have advanced to the point that a number of inhibitors for these enzymes have been developed to attempt to ameliorate these conditions; some of the inhibitors are currently in human clinical trial. The need for this book is to review the current status of this field and the prospect for the inhibitors to be clinically important.
This volume provides a wide range of methods and protocols detailing various protein structures as platforms for building architectures with targeted application. Chapters guide the readers through exploiting a number of protein scaffolds including virus nanoparticles, elastin and collagen peptides and proteins, and other protein templates for either building materials or presentation of ligands. Site-specific bioconjugation methods, some unique protein architectures, and techniques that exploit peptide amphiphile micelles and assembly of chaperones are also featured. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Protein Scaffolds: Design, Synthesis, and Applications aims to ensure successful results in the study of this vital field.
This volume explores three main aspects of nitric oxide (NO) research: NO treatment and detection, NO modifications, and NO detoxification. The book also covers methods used to study human/animal and plant nitric oxide. The chapters are divided into three parts: part one looks at NO treatments using gaseous nitric oxide and detection using a NO-sensitive electrode, electron spin resonance, and fluorescence-based NO-sensor proteins. Part two talks about various techniques used to detect and identify NO-dependent modifications, such as biotin-switch assay and quantification of s-nitrosated proteins. Part three focuses on the study of s-nitrosothiol homeostasis and denitrosation activities. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting edge and authoritative, Nitric Oxide: Methods and Protocols is a valuable resource for anyone interested in learning more about this evolving field.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
This updated second edition covers the molecular biology, genome engineering tools and comprehensive analysis techniques for Corynebacterium glutamicum. Aside from modern omics-based approaches, the authors also focus on cell physiology, including cell division, central carbon metabolic pathways, and the respiratory chain. Readers will learn how primary mechanisms like energy metabolism can be applied in processes like biorefinery. Newly added topics include cell envelope structures and aromatic compound metabolism in C. glutamicum. These chapters will be particularly useful for those interested in the microbial production of commodity chemicals, fuels, and proteins. Corynebacteriacea are already some of the most important industrial microorganisms. Understanding the cell physiology of C. glutamicum will help manufacturers to increase their product range and productivity through efficient metabolic engineering.
An accompanying volume (Volume 6) in this series presents
strategies of cellular invasion from the viewpoint of the microbe.
Protein degradation has been identified as a major mechanism for the regulation of cellular functions. Not surprisingly, its deregulation is implied in almost any pathological condition. This book describes how aged proteins are eliminated during cell metabolism, how cell proliferation is regulated by protein degradation and how its deregulation can contribute to the development of cancer, how protein degradation is modified during normal and abnormal aging, in particular with regard to Alzheimer's disease and other degenerative diseases of the brain and central nervous system. Attempts aiming at correcting these pathologies by interfering with deviations of the normal pathway of protein degradation are also treated.
This book systemically describes the mechanisms underlying the neural regulation of metabolism. Metabolic diseases, including obesity and its associated conditions, currently affect more than 500 million people worldwide. Recent research has shown that the neural regulation of metabolism is a central mechanism that controls metabolic status physiologically and pathophysiologically. The book first introduces the latest studies on the neural and cellular mechanisms of hypothalamic neurons, hypothalamic glial cells, neural circuitries, cellular signaling pathways, and synaptic plasticity in the control of appetite, body weight, feeding-related behaviors and metabolic disorders. It then summarizes the humoral mechanisms by which critical adipocyte-derived hormones and lipoprotein lipase regulate lipid and glucose metabolism, and examines the role of the hypothalamus-sympathetic nerve, a critical nerve pathway from CNS to peripheral nervous system (PNS), in the regulation of metabolism in multiple tissues/organs. Furthermore, the book discusses the functions of adipose tissue in energy metabolism. Lastly, it explores dietary interventions to treat neural diseases and some of the emerging technologies used to study the neural regulation of metabolism. Presenting cutting-edge developments in the neural regulation of metabolism, the book is a valuable reference resource for graduate students and researchers in the field of neuroscience and metabolism.
This volume focuses on mitochondrial RNA metabolism, emphasizing recent discoveries and technological advances in this fast moving area that increase our understanding of mitochondrial gene function. Topics addressed include the interplay of mitochondria with the nucleus and cytosol, structure-function connections, and relevance to human disease. Mitochondria are the powerhouses of the cell, and a great deal is known about mitochondrial energy metabolism. Less well known is the plethora of amazing mechanisms that have evolved to control expression of mitochondrial genomes. Several RNA processes and machineries in protozoa, plants, flies and humans are discussed, including: transcription and RNA polymerase mechanism; tRNA processing of 5' and 3' ends; mRNA maturation by nucleotide insertion/deletion editing and by RNA splicing; mRNA stability; and RNA import. Specialized factors and ribonucleoproteins (RNPs) examined include pentatricopeptide repeat (PPR) proteins, RNase P, polymerases, helicases, nucleases, editing and repair enzymes. Remarkable features of these processes and factors are either not found outside mitochondria, differ substantially among eukaryotic lineages, or are unique in biology.
This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.
This book reviews the advances and challenges of structure-based drug design in the preclinical drug discovery process, addressing various diseases, including malaria, tuberculosis and cancer. Written by internationally recognized researchers, this edited book discusses how the application of the various in-silico techniques, such as molecular docking, virtual screening, pharmacophore modeling, molecular dynamics simulations, and residue interaction networks offers insights into pharmacologically active novel molecular entities. It presents a clear concept of the molecular mechanism of different drug targets and explores methods to help understand drug resistance. In addition, it includes chapters dedicated to natural-product- derived medicines, combinatorial drug discovery, the CryoEM technique for structure-based drug design and big data in drug discovery. The book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the areas of chemoinformatics, medicinal and pharmaceutical chemistry and pharmacoinformatics.
Authored by the world's leading kinase experts, this is a comprehensive introduction to current knowledge and practice within this emerging field. Following an overview of the major players and pathways that define the kinome, the major part of this work is devoted to current strategies of kinome investigation and manipulation. As such, kinase engineering, peptide substrate engineering, co-substrate design and kinase inhibitor design are discussed in detail, and their potential applications in kinome analysis and kinome-based pharmacotherapy are shown. The result is a toolbox for every kinase researcher: By addressing and comparing current approaches to the study of kinase action, both novice and established researchers will benefit from the practical knowledge contained in this invaluable reference. |
You may like...
Authentication of Food and Wine
Susan E. Ebeler, Gary R. Takeoka, …
Hardcover
R3,096
Discovery Miles 30 960
Chiral Pesticides - Stereoselectivity…
A. Wayne Garrison, Jay Gan, …
Hardcover
R2,693
Discovery Miles 26 930
Advances in Human Vector Control
J. Marshall Clark, Jeffrey Bloomquist, …
Hardcover
R2,582
Discovery Miles 25 820
Grain and Seed Proteins Functionality
Jose Carlos Jimenez-Lopez
Hardcover
Lehninger Principles of Biochemistry…
David L. Nelson, Michael Cox
Paperback
R2,322
Discovery Miles 23 220
Assessing Transformation Products of…
Joerg E. Drewes, Thomas Letzel
Hardcover
R4,782
Discovery Miles 47 820
|