![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
Tissue Elasticity Imaging: Volume One: Theory and Methods offers an extensive treatment of the fundamentals and applications of this groundbreaking diagnostic modality. The book introduces elasticity imaging, its history, the fundamental physics, and the different elasticity imaging methods, along with their implementation details, problems and artefacts. It is an essential resource for all researchers and practitioners interested in any elasticity imaging modality. As many diseases, including cancers, alter tissue mechanical properties, it is not always possible for conventional methods to detect changes, but with elasticity images that are produced by slow tissue deformation or low-frequency vibration, these changes can be displayed.
This book, based on a selection of invited presentations from a topical workshop, focusses on time-variable oscillations and their interactions. The problem is challenging, because the origin of the time variability is usually unknown. In mathematical terms, the oscillations are non-autonomous, reflecting the physics of open systems where the function of each oscillator is affected by its environment. Time-frequency analysis being essential, recent advances in this area, including wavelet phase coherence analysis and nonlinear mode decomposition, are discussed. Some applications to biology and physiology are described. Although the most important manifestation of time-variable oscillations is arguably in biology, they also crop up in, e.g. astrophysics, or for electrons on superfluid helium. The book brings together the research of the best international experts in seemingly very different disciplinary areas.
A follow-up to the experimental and instrumental aspects described in Basic Principles of Analytical Ultracentrifugation, the volume Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles describes the theory and practice of data analysis. Mathematical models for the sedimentation process and the evolution of detected signals are developed in a comprehensive framework, jointly with the description of current and historical strategies for how to extract from noisy experimental data the physical parameters of interest, such as size, mass, and shape, composition, and polydispersity of sedimenting particles. The methods are extensively illustrated, and supported with practical applications, as well as cross-references where to find the methods in the public domain software SEDFIT and SEDPHAT. The systems covered are discrete or polydisperse mixtures of sedimenting molecules or particles in dilute solution, such as proteins and other biomolecules and their stable complexes, man-made polymers, and nanoparticles, observed in different optical systems. A useful reference for researchers and graduate students of macromolecular disciplines, these methods form the essential foundation for the analysis of dynamic interacting systems, which are covered in the volume Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems. Software referenced in the book is available for download at: https://sedfitsedphat.nibib.nih.gov/default.aspx
Analytical ultracentrifugation is one of the most powerful solution techniques for the study of macromolecular interactions, to define the number and stoichiometry of complexes formed, and to measure affinities ranging from very strong to very weak and repulsive. Building on the data analysis tools described in the volume Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles, and the experimental and instrumental aspects in the first volume Basic Principles of Analytical Ultracentrifugation, the present volume Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems is devoted to the theory and practical data analysis of dynamically coupled sedimentation processes. This volume is designed to fill a gap in biophysical methodology to provide a framework that builds on the fundamentals of the highly developed traditional methods of analytical ultracentrifugation, updated with current methodology and from a viewpoint of modern applications. It will be an invaluable resource for researchers and graduate students interested in the application of analytical ultracentrifugation in the study of interacting systems, such as biological macromolecules, multi-protein complexes, polymers, or nanoparticles.
Historically, science has strived to reduced complex problems to its simplest components, but more recently, it has recognized the merit of studying complex phenomena in situ. Fractal geometry is one such appealing approach, and this book discusses their application to complex problems in molecular biophysics. It provides a detailed, unified treatment of fractal aspects of protein and structure dynamics, fractal reaction kinetics in biochemical systems, sequence correlations in DNA and proteins, and descriptors of chaos in enzymatic systems. In an area that has been slow to acknowledge the use of fractals, this is an important addition to the literature, offering a glimpse of the wealth of possible applications. application to complex problems
This detailed collection explores techniques involved in the main strategies of nanopore sensing, such as translocation, analyte trapping, and interactions with external binding sites. Opening with a section on nanopore design and nanopore production, the book continues with parts devoted to various biological nanopores, nanopore engineering, and their uses in single molecule sensing, computational methods to study intrinsic nanopore behavior, characterizing the specific translocation activity of a vesicle particle through a nanopore, as well as the use of the technique droplet interface bilayer (DIB) in nanopore and membrane biophysical studies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Nanopore Technology: Methods and Protocols, with its focus on nanopore technology and biomolecule characterization, will hold the interest of the biophysicists, biochemists, bioengineers, and molecular biologists who are working toward further understanding this key field of research.
Nanotechnology in biology and medicine: Research advancements & future perspectives is focused to provide an interdisciplinary, integrative overview on the developments made in nanotechnology till date along with the ongoing trends and the future prospects. It presents the basics, fundamental results/current applications and latest achievements on nanobiotechnological researches worldwide scientific era. One of the major goals of this book is to highlight the multifaceted issues on or surrounding of nanotechnology on the basis of case studies, academic and theoretical articles, technology transfer (patents and copyrights), innovation, economics and policy management. Moreover, a large variety of nanobio-analytical methods are presented as a core asset to the early career researchers. This book has been designed for scientists, academician, students and entrepreneurs engaged in nanotechnology research and development. Nonetheless, it should be of interest to a variety of scientific disciplines including agriculture, medicine, drug and food material sciences and consumer products. Features It provides a thoroughly comprehensive overview of all major aspects of nanobiotechnology, considering the technology, applications, and socio-economic context It integrates physics, biology, and chemistry of nanosystems It reflects the state-of-the-art in nanotechnological research (biomedical, food, agriculture) It presents the application of nanotechnology in biomedical field including diagnostics and therapeutics (drug discovery, screening and delivery) It also discusses research involving gene therapy, cancer nanotheranostics, nano sensors, lab-on-a-chip techniques, etc. It provides the information about health risks of nanotechnology and potential remedies. It offers a timely forum for peer-reviewed research with extensive references within each chapter
A full understanding of modern chemistry is impossible without quantum theory. Since the advent of quantum mechanics in 1925, a number of chemical phenomena have been explained, such as electron transfer, excitation energy transfer, and other phenomena in photochemistry and photo-physics. Chemical bonds can now be accurately calculated with the help of a personal computer. Addressing students of theoretical and quantum chemistry and their counterparts in physics, Chemical Physics: Electrons and Excitations introduces chemical physics as a gateway to fields such as photo physics, solid-state physics, and electrochemistry. Offering relevant background in theory and applications, it covers the foundations of quantum mechanics and molecular structure, as well as more specialized topics such as transfer reactions and photochemistry.
This book equips students with a thorough understanding of various types of sensors and biosensors that can be used for chemical, biological, and biomedical applications, including but not limited to temperature sensors, strain sensor, light sensors, spectrophotometric sensors, pulse oximeter, optical fiber probes, fluorescence sensors, pH sensor, ion-selective electrodes, piezoelectric sensors, glucose sensors, DNA and immunosensors, lab-on-a-chip biosensors, paper-based lab-on-a-chip biosensors, and microcontroller-based sensors. The author treats the study of biosensors with an applications-based approach, including over 15 extensive, hands-on labs given at the end of each chapter. The material is presented using a building-block approach, beginning with the fundamentals of sensor design and temperature sensors, and ending with more complicated biosensors.New to this second edition are sections on op-amp filters, pulse oximetry, meat quality monitoring, advanced fluorescent dyes, autofluorescence, various fluorescence detection methods, fluoride ion-selective electrode, advanced glucose sensing methods including continuous glucose monitoring, paper-based lab-on-a-chip, etc. A new chapter on nano-biosensors and an appendix on microcontrollers make this textbook ideal for undergraduate engineering students studying biosensors. It can also serve as a hands-on guide for scientists and engineers working in the sensor or biosensor industries.
Structural and Morphological Evolution in Metal-Organic Films and Multilayers presents major results of the authors' work carried out on Langmuir monolayers and Langmuir-Blodgett multilayers. The authors address two important questions: Are metal-organic monolayer systems more like solids or more like liquids? Does a two-dimensional system have different kind of bonds than a bulk or three-dimensional body? The book reveals the richness hidden in these supposedly well-known systems, including saturated, aliphatic fatty acids. It examines the mechanisms behind the growth of monolayers and multilayers of the molecules primarily from a physicist's point of view. The authors highlight the relationship between molecular structure and domain structure as well as the various physical properties. The book also explores the interplay between physics and chemistry in metal ions.
The book gives a comprehensive introduction to nano-optics The book is of interest to physicists, biologists and chemists The book may suggest directions to doctoral thesis investigations This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, Italy, 3-18 July, 2011. The pedagogical aspect of the Institute is reflected in the topics presented in this volume.
This book embraces all physiochemical aspects of the structure and molecular dynamics of water, focusing on its role in biological objects, e.g. living cells and tissue, and in the formation of functionally active structures of biological molecules and their ensembles. Water is the single most abundant chemical found in all living things. It offers a detailed look into the latest modern physical methods for studying the molecular structure and dynamics of the water and provides a critical analysis of the existing literature data on the properties of water in biological objects. Water as a chemical reagent and as a medium for the formation of conditions for enzymatic catalysis is a core focus of this book. Although well suited for active researchers, the book as a whole, as well as each chapter on its own, can be used as fundamental reference material for graduate and undergraduate students throughout chemistry, physics, biophysics and biomedicine.
The Handbook of Chemical and Biological Sensors focuses on the development of sensors to recognize substances rather than physical quantities. This fully inclusive book examines devices that use a biological sensing element to detect and measure chemical and biological species as well as those that use a synthetic element to achieve a similar result. A first port of call for anyone with a specific interest, question, or problem relating to this area, this comprehensive source of reference serves as a guide for practicing scientists and as a text for many graduate courses. It presents relevant physics to chemists, chemistry to materials scientists, materials science to electronic engineers, and fabrication technology to all of the above. In addition, the handbook is useful both to newcomers and to experienced researchers who wish to broaden their knowledge of the constituent disciplines of this wide-ranging field.
Systems-Level Modelling of Microbial Communities: Theory and Practice introduces various aspects of modelling microbial communities and presents a detailed overview of the computational methods which have been developed in this area. This book is aimed at researchers in the field of computational/systems biology as well as biologists/experimentalists studying microbial communities, who are keen on embracing the concepts of computational modelling. The primary focus of this book is on methods for modelling interactions between micro-organisms in a community, with special emphasis on constraint-based and network-based modelling techniques. A brief overview of population- and agent-based modelling is also presented. Lastly, it covers the experimental methods to understand microbial communities, and provides an outlook on how the field may evolve in the coming years.
"Taken together, the body of information contained in this book provides readers with a bird's-eye view of different aspects of exciting work at the convergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the editors for putting this volume together." -Arup K. Chakraborty, Robert T. Haslam Professor of Chemical Engineering, and Professor of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.
This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, "BIO 2010: Transforming Undergraduate Education for Future - search Biologists" [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.
The Latest Developments on the Role of Dynamics in Protein Functions Computational Approaches to Protein Dynamics: From Quantum to Coarse-Grained Methods presents modern biomolecular computational techniques that address protein flexibility/dynamics at all levels of theory. An international contingent of leading researchers in chemistry, physics, and biology show how these advanced methods provide insights into dynamic aspects of biochemical processes. A particular focus is on intrinsically disordered proteins (IDPs), which lack a well-defined three-dimensional structure and function as dynamic ensembles. The book covers a wide spectrum of dynamics, from electronic structure-based to coarse-grained techniques via multiscaling at different levels. After an introduction to dynamics and historical overview of basic methodologies, the book addresses the following issues: Is there a quantitative relationship between enzymatic catalysis and protein dynamics? Which are the functionally relevant motions of proteins? How can structural properties and partner recognition mechanisms of IDPs be simulated? How can we speed up molecular dynamics? How can we describe conformational ensembles by the synergistic effort of computations and experiments? While dynamics is now considered essential for interpreting protein action, it is not yet an integral component in establishing structure-function relationships of proteins. Helping to reshape this classical view in biochemistry, this groundbreaking book explores advances in computational methodology and contributes to the new, ensemble way of studying proteins.
Optical probes, particularly the fluorescent varieties, enable researchers to observe cellular events in real time and with great spatial resolution. Optical Probes in Biology explores the diverse capabilities of these powerful and versatile tools and presents various approaches used to design, develop, and implement them. The book examines the use of optical probes to detect and track numerous molecular processes in living cells, including GTPase and kinase activities, membrane lipids, voltage, metal ions, metabolic signals, RNA, and histone modifications. It critically reviews the different probe designs and delves into the strategies for developing new fluorescent protein varieties with enhanced capabilities. It also covers sophisticated imaging techniques and equipment, such as intensity and lifetime-based fluorescence microscopy methods, used to visualize and track optical probes. In addition, the book goes beyond live-cell tracking to discuss the growing application of activity-based probes for performing pharmacological drug screening and probing molecular processes in living animals. It also discusses emerging techniques that are expanding optical probe-based approaches into new biological frontiers. With contributions from top international scientists, this book offers a thorough overview of the latest optical probes in cell biology and biochemistry. Both newcomers and established researchers will discover how to incorporate state-of-the-art optical probes and fluorescence imaging into their research.
From the Lab to Clinical Settings-Advances in Quantitative, Noninvasive Optical Diagnostics Noninvasive fluorescence imaging techniques, novel fluorescent labels, and natural biomarkers are revolutionizing our knowledge of cellular processes, signaling and metabolic pathways, the underlying mechanisms for health problems, and the identification of new therapeutic targets for drug discoveries. Natural Biomarkers for Cellular Metabolism: Biology, Techniques, and Applications delves into the current state of knowledge on intrinsic fluorescent biomarkers and highlights recent developments in using these biomarkers for the metabolic mapping and clinical diagnosis of healthy and diseased cells and tissues. Autofluorescent Biomarkers for Biomedical Diagnostics The book's first section introduces the fundamentals of cellular energy metabolism as well as natural biomarkers within the context of their biological functions. The second section outlines the theoretical and technical background of quantitative, noninvasive, autofluorescence microscopy and spectroscopy methods, including experimental design, calibration, pitfalls, and remedies of data acquisition and analysis. The last two sections highlight advances in biomedical and biochemical applications, such as monitoring stem cell differentiation in engineered tissues and diagnosing cancer and ophthalmic diseases quantitatively and noninvasively. Tailored to Interdisciplinary Researchers Covering cell biology, imaging techniques, and clinical diagnostics, this book provides readers with a complete guide to studying cellular/tissue metabolism under healthy, diseased, and environment-induced stress conditions using natural biomarkers. The book is designed for graduate and advanced undergraduate students, biophysics instructors, medical researchers, and those in pharmaceutical R&D.
The volumes in this authoritative series present a
multidisciplinary approach to modeling and simulation of flows in
the cardiovascular and ventilatory systems, especially multiscale
modeling and coupled simulations. The cardiovascular and
respiratory systems are tightly coupled, as their primary function
is to supply oxygen to and remove carbon dioxide from the body's
cells. Because physiological conduits have deformable and reactive
walls, macroscopic flow behavior and prediction must be coupled to
phenomenological models of nano- and microscopic events in a
corrector scheme of regulated mechanisms when the vessel lumen
caliber varies markedly. Therefore, investigation of flows of blood
and air in physiological conduits requires an understanding of the
biology, chemistry, and physics of these systems together with the
mathematical tools to describe their functioning.
Biophoton emission now belongs to a topical field of modern science: It concerns a weak light emision from biological systems. Such molecular events are clearly compatible with collective phenomena as shown by recent developments in the life sciences such as the chaos theory. This book is concerned with the "optical window" of biological interactions and in view of their correlations to many biological functions they provide a powerful, non-invasive tool of analysing biological systems. Topics include food science, pollution, efficacy of drugs including the treatment of cancer and immune diseases, and communication phenomena such as consciousness.The collection of articles in this book covers the historical background, the physics of biophoton emission, those biological phenomena which show evidence of a "holistic" character, and finally discusses applications and biological evolution. This volume serves to bring researchers up-to-date on the subject and draws attention to the many exciting findings that are widely scattered in the scientific literature.
With usage of mass spectrometry continually expanding, an increasing number of scientists, technicians, students, and physicians are coming into contact with this valuable technique. Mass spectrometry has many uses, both qualitative and quantitative, from analyzing simple gases to environmental contaminants, pharmaceuticals, and complex biopolymers. The extraordinary versatility can make mass spectrometers daunting to novices. Consequently, new users would benefit greatly from an understanding of the basic concepts as well as the processes that occur in these instruments. Mass Spectrometry for the Novice provides exactly that, with detailed, straightforward descriptions and clear illustrations of principles of operations and techniques. The book begins with an overview that includes essential definitions and then provides information on the components of and the strategies used in the most common instruments. The authors discuss the methodologies available, classes of compounds analyzed, and the types of data that can be generated. A group of representative applications from published articles is summarized, demonstrating the diversity of mass spectrometry. The authors also condense the essentials of the topic into one invaluable chapter that provides a set of concise take-home messages on all aspects of mass spectrometry. The final section provides a collection of resources including books, reviews, and useful websites. Using simple language, new color figures, clever cartoons, and assuming no prior knowledge, this book provides a readily understandable entree to mass spectrometry. Downloadable resources with selected figures and cartoons is included.
This comprehensive and topical volume presents a number of significant advances on many fronts in this area of research, particularly emphasizing current and future biomedical applications of electromagnetic fields.
Numerous essential biological functions involve metalloproteins; therefore, understanding metalloproteins and how to manipulate them is significant in the biological and medical fields. An examination of current research, Metalloproteins: Theory, Calculations, and Experiments explores the interplay between theory and experiment, detailing the role of theoretical modeling in the field and explaining how it aids experiments. The text also presents the current state of computational protein modeling, enabling researchers to adopt computation as an integral component of their studies. This book addresses two different aspects on metalloproteins in unison. It reviews the development of theoretical and computational methods for metalloprotein simulation with specific examples. The authors also present some of the most intriguing and important experimental results on metalloprotein systems. Although a connection can be made between these two aspects of the research, the authors do not do so explicitly. Rather, they provide the platform required to ignite further collaboration between experimentalists and theoreticians. A collection of works from top researchers in this field, the text presents diverse subjects that comprehensively reflect the current state of metalloprotein research. With these advances in structural information, theory and computation are starting to play a more significant role, particularly in identifying the reaction mechanism. The book summarizes some of the recent progress in both experiments and theory/computation showing the synergy that is now developing.
Arguably the first book of its kind, Computational Bioengineering explores the power of multidisciplinary computer modeling in bioengineering. Written by experts, the book examines the interplay of multiple governing principles underlying common biomedical devices and problems, bolstered by case studies. It shows you how to take advantage of the latest computational capabilities to deal with biomedical problems using an integrative approach. This approach fosters an integrative problem-solving mentality for the generation of new and novel solutions to future biomedical problems. Each chapter begins with a brief review of the advances in computational efforts in the selected topic area and ends with case studies with detailed technical information. The approach provides a relevant overview of the selected topic area and demonstrates, with case studies, the power of computational modeling in offering predictive capabilities to assess new surgical concepts and medical devices and post-operative surgical outcomes. The book illustrates the expanded capabilities of computational bioengineering through discussions of bioengineering problems and discusses an image-based bioengineering modeling technique. Although computer modeling has been used to tackle bioengineering problems for decades, a systematic study of computational bioengineering not only addresses many critical challenges facing bioengineering but also sets a new direction for advancing the field. In a long run, this book is expected to foster an integrative problem-solving mentality that will help you generate new and novel solutions to future biomedical problems. |
You may like...
Handbook of Hormones - Comparative…
Hironori Ando, Kazuyoshi Ukena, …
Paperback
R5,129
Discovery Miles 51 290
Open-Channel Microfluidics…
Jean Berthier, Ashleigh B. Theberge, …
Paperback
R756
Discovery Miles 7 560
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R746
Discovery Miles 7 460
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
Introduction to Medical Electronics…
L. Nokes, D. Jennings, …
Paperback
R1,340
Discovery Miles 13 400
|