![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
This volume describes the state-of-knowledge in the study of the relationships between mechanical loading states in tissues and common pathophysiologies related to increase in mass of adipose tissues and/or hyperglycemia which eventually lead to obesity, diabetes, insulin resistance, hyperlipidemia, metabolic inflammations, certain types of cancer and other related diseases. There appears to be an interaction between the loading states in tissues and cells and these chronic conditions, as well as with factors such as age, gender and genetics of the individual. Bioengineering has made key contributions to this research field in providing technologies for cell biomechanics experimentation, microscopy and image processing, tissue engineering and multi-scale, multi-physics computational modeling. Topics at the frontier of this field of study include: the continuous monitoring of cell growth, proliferation and differentiation in response to mechanical factors such as stiffness of the extracellular matrix (ECM) and mechanical loads transferred through the ECM; mechanically-activated signaling pathways and molecular mechanisms; effects of different loading regimes and mechanical environments on differentiation fates of mesenchymal stem cells (MSCs) into myogenic and osteogenic versus adipogenic lineages; the interactions between nutrition and mechanotransduction; cell morphology, focal adhesion patterns and cytoskeletal remodeling changes in adipogenesis; activation of receptors related to diabetes by mechanical forces; brown and white adipose plasticity and its regulation by mechanical factors.
This book presents established and new approaches to perform calculations of electrostatic interactions at the nanoscale, with particular focus on molecular biology applications. It is based on the proceedings of the Computational Electrostatics for Biological Applications international meeting, which brought together researchers in computational disciplines to discuss and explore diverse methods to improve electrostatic calculations. Fostering an interdisciplinary approach to the description of complex physical and biological problems, this book encompasses contributions originating in the fields of geometry processing, shape modeling, applied mathematics, and computational biology and chemistry. The main topics covered are theoretical and numerical aspects of the solution of the Poisson-Boltzmann equation, surveys and comparison among geometric approaches to the modelling of molecular surfaces and related discretization and computational issues. It also includes a number of contributions addressing applications in biology, biophysics and nanotechnology. The book is primarily intended as a reference for researchers in the computational molecular biology and chemistry fields. As such, it also aims at becoming a key source of information for a wide range of scientists who need to know how modeling and computing at the molecular level may influence the design and interpretation of their experiments.
This authored monograph introduces a genuinely theoretical approach to biology. Starting point is the investigation of empirical biological scaling including their variability, which is found in the literature, e.g. allometric relationships, fractals, etc. The book then analyzes two different aspects of biological time: first, a supplementary temporal dimension to accommodate proper biological rhythms; secondly, the concepts of protension and retention as a means of local organization of time in living organisms. Moreover, the book investigates the role of symmetry in biology, in view of its ubiquitous importance in physics. In relation with the notion of extended critical transitions, the book proposes that organisms and their evolution can be characterized by continued symmetry changes, which accounts for the irreducibility of their historicity and variability. The authors also introduce the concept of anti-entropy as a measure for the potential of variability, being equally understood as alterations in symmetry. By this, the book provides a mathematical account of Gould's analysis of phenotypic complexity with respect to biological evolution. The target audience primarily comprises researchers interested in new theoretical approaches to biology, from physical, biological or philosophical backgrounds, but the book may also be beneficial for graduate students who want to enter this field.
This volume provides a comprehensive selection of recent studies addressing insect hearing and acoustic communication. The variety of signalling behaviours and hearing organs makes insects highly suitable animals for exploring and analysing signal generation and hearing in the context of neural processing, ecology, evolution and genetics. Across a variety of hearing species like moths, crickets, bush-crickets, grasshoppers, cicadas and flies, the leading researchers in the field cover recent scientific progress and address key points in current research, such as: - How can we approach the evolution of hearing in insects and what is the developmental and neural origin of the auditory organs? - How are hearing and sound production embedded in the natural lifestyle of the animals, allowing intraspecific communication but also predator avoidance and even predation? - What are the functional properties of hearing organs and how are they achieved at the molecular, biophysical and neural levels? - What are the neural mechanisms of central auditory processing and signal generation? The book is intended for students and researchers both inside and outside of the fascinating field of bioacoustics and aims to foster understanding of hearing and acoustic communication in insects.
This book describes the unique characean experimental system, which provides a simplified model for many aspects of the physiology, transport and electrophysiology of higher plants. The first chapter offers a thorough grounding in the morphology, taxonomy and ecology of Characeae plants. Research on characean detached cells in steady state is summarised in Chapter 2, and Chapter 3 covers characean detached cells subjected to calibrated and mostly abiotic types of stress: touch, wounding, voltage clamp to depolarised and hyperpolarised potential difference levels, osmotic and saline stress. Chapter 4 highlights cytoplasmic streaming, cell-to-cell transport, gravitropism, cell walls and the role of Characeae in phytoremediation. The book is intended for researchers and students using the characean system and will also serve as an invaluable reference resource for electrophysiologists working on higher plants.
This book focuses on the assembly, organization and resultant collective dynamics of soft matter systems maintained away from equilibrium by an energy flux. Living matter is the ultimate example of such systems, which are comprised of different constituents on very different scales (ions, nucleic acids, proteins, cells). The result of their diverse interactions, maintained using the energy from physiological processes, is a fantastically well-organized and dynamic whole. This work describes results from minimal, biomimetic systems and primarily investigates membranes and active emulsions, as well as key aspects of both soft matter and non-equilibrium phenomena. It is shown that these minimal reconstitutions are already capable of a range of complex behaviour such as nonlinear electric responses, chemical communication and locomotion. These studies will bring us closer to a fundamental understanding of complex systems by reconstituting key aspects of their form and function in simple model systems. Further, they may also serve as the first technological steps towards artificial soft functional matter.
Together, the volumes in this series present all of the data needed at various length scales for a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to, and remove carbon dioxide from, the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanism. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems, together with the mathematical tools to describe their functioning in quantitative terms. The present volume focuses on macroscopic aspects of the cardiovascular and respiratory systems in normal conditions, i.e., anatomy and physiology, as well as the acquisition and processing of medical images and physiological signals.
This monograph presents the latest results related to bio-mechanical systems and materials. The bio-mechanical systems with which his book is concerned are prostheses, implants, medical operation robots and muscular re-training systems. To characterize and design such systems, a multi-disciplinary approach is required which involves the classical disciplines of mechanical/materials engineering and biology and medicine. The challenge in such an approach is that views, concepts or even language are sometimes different from discipline to discipline and the interaction and communication of the scientists must be first developed and adjusted. Within the context of materials' science, the book covers the interaction of materials with mechanical systems, their description as a mechanical system or their mechanical properties.
This volume focuses on latest research in therapeutic devices for cardiovascular, i.e. vascular and valvular and cardiac diseases. In the area of vascular therapies, aspects covered relate to latest research in small-diameter tissue-regenerative vascular grafts, one of the greatest persisting challenges in cardiovascular therapies, stent grafts and endovascular stents for percutaneous arterial interventions. Contributions on valvular therapies focus on tissue engineered and tissue regenerative prosthetic heart valves and valvular prostheses for trans-apical implantation including the challenges posed on the prosthesis design. The section on cardiac diseases aims at covering therapeutic advances for myocardial infarction and prevention of heart failure and on in vivo biomechanics of implantable cardiac pacemaker devices. A further section complements these three areas by presenting constitutive modelling of soft biological tissues of the cardiovascular system, an area imperative for advanced numerical and computational modelling in the development and optimisation of cardiovascular devices and therapies.
Imaging and Manipulating Molecular Orbitals celebrates the 60th anniversary of the first image of a single molecule by E. Müller. This book summarizes the advances in the field from various groups around the world who use a broad range of experimental techniques: scanning probe microscopy (STM and AFM), field emission microscopy, transmission electron microscopy, attosecond tomography and photoemission spectroscopy. The book is aimed at those who are interested in the field of molecular orbital imaging and manipulation. Included in the book are a variety of experimental techniques in combination with theoretical approaches which describe the spatial distribution and energies of the molecular orbitals. The goal is to provide the reader with an up-to-date summary on the latest developments in this field from various points of view.
Matthias Wurl presents two essential steps to implement offline PET monitoring of proton dose delivery at a clinical facility, namely the setting up of an accurate Monte Carlo model of the clinical beamline and the experimental validation of positron emitter production cross-sections. In the first part, the field size dependence of the dose output is described for scanned proton beams. Both the Monte Carlo and an analytical computational beam model were able to accurately predict target dose, while the latter tends to overestimate dose in normal tissue. In the second part, the author presents PET measurements of different phantom materials, which were activated by the proton beam. The results indicate that for an irradiation with a high number of protons for the sake of good statistics, dead time losses of the PET scanner may become important and lead to an underestimation of positron-emitter production yields.
Fluorescence imaging, at macro, micro, and submicro scales, has revolutionized biological science in the past 30 years. Immunolabelling has provided precise targeting of molecules in fixed tissue, while fluorescent proteins have enabled localization in living tissues. Fluorescent indicators enable imaging of dynamic changes in cell metabolism. This book covers, for the first time, imaging at all scales from macro to submicro (superresolution). Its authors include Robert Clegg, legendary teacher and researcher (who, sadly, passed away during the editing); Jim Pawley, editor of several editions of the Handbook of Biological Confocal Microscopy; the famous and now dispersed New Zealand team of Mark Cannell, Christian Soeller, and David Baddeley; Robert Hoffman, pioneer of whole-animal imaging in cancer research; Andreas Schoenle and Christian Eggeling on STED nanoscopy, and many more famous participants in this field. All the contributors are at the cutting edge of their field.
Originally published in 1934 as part of the Cambridge Comparative Physiology series, this book examines the key principles underlying animal physiology and the study of physiology. Barcroft shows how every natural internal process is affected and supported by other processes and systems, and concludes every chapter with a brief bibliography on the topics covered. This book will be of value to anyone with an interest in the study of physiology and the functions performed by the organs.
Originally published in 1939 as part of the Cambridge Comparative Physiology series, this book details how animals living in water regulate their internal water content. Krough exhaustively surveys animals from protozoa to crustaceans and aquatic birds, as well as examining the osmotic conditions in sensitive eggs and embryos. This book will be of value to anyone with an interest in osmosis and the life of aquatic animals.
Originally published in 1927 as the third instalment of the Cambridge Comparative Physiology series, this book examines the role of hormones in 'co-ordinating the activities of the organism'. Hogben illustrates the text with charts to illustrate key points, as well as photographs of animal specimens to demonstrate the role of certain secretions in processes such as growth and colour development. This book will be of value to anyone with an interest in the history of science.
Originally published in 1928 as part of the Cambridge Comparative Physiology series, this book examines the importance of cilia in the lives of many invertebrate animals. Gray demonstrates how cilia, not muscle fibres, often play the dominant role as organs of contraction and locomotion and explains how ciliated surfaces are co-ordinated. This book will be of value to anyone with an interest in the history of science.
Originally published in 1932, this book examines how hormones and nervous impulses affect the body, with special reference to animals with colour-changing abilities. Parker gives examples from various areas of the animal kingdom, both vertebrates and invertebrates, to demonstrate how the stimulation of certain sensory organs and nerves can produce very different effects and to draw wider conclusions about the role that 'nervous secretion' can play in other physiological operations. This book will be of value to anyone with an interest in the history of science and comparative physiology.
Originally published in 1928 as part of the Cambridge Comparative Physiology series, this book examines whether all muscular contractions use essentially the same processes regardless of the type of muscle in question. Ritchie uses an isolated muscle from a frog to investigate whether the chemical and physical causes of a simple muscle twitch can be responsible for the movements of all muscles. This book will be of value to anyone with an interest in the history of science or comparative physiology.
Originally published in 1934 as part of the Cambridge Comparative Physiology series, this book discusses the process of tissue differentiation in developing embryos of a variety of species. Huxley and de Beer examine important aspects of development such as symmetry, the mosaic stage of differentiation and the relationship between hereditary factors and differentiation. This book will be of value to anyone with an interest in the history of science or embryology.
Originally published in 1927 as part of the Cambridge Comparative Physiology series, this book examines the composition and function of the heart in a range of animals, both vertebrates and invertebrates. Clark examines subjects such as how the function of the heart differs between members of the same species who are not of the same size, as well as the nervous control of the heart and the differences in heart structure between cold- and warm-blooded animals. This book will be of value to anyone with an interest in the history of science or cardiology.
This book explores the author's wide-ranging work on muscle research, which spans more than 50 years. It delves into the dogmas of muscle contraction: how the models were constructed and what was overlooked during the process, including their resulting shortcomings. The text stimulates general readers' and researchers' interest, highlights the author's pioneering work on the electron microscopic recording of myosin head power and recovery strokes, and presents a frank discussion on how the original work sometimes tends to be overlooked by competing scientists, who hinder the progress of science.
Each chapter has three types of learning aides for students: open-ended questions, multiple-choice questions, and quantitative problems. There is an average of about 50 per chapter. There are also a number of worked examples in the chapters, averaging over 5 per chapter, and almost 600 photos and line drawings.
This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers from academia and industry up to date on the most recent developments in this field.
This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the un scattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in bio photonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media. |
You may like...
High-Density Sequencing Applications in…
Agamemnon J. Carpousis
Hardcover
R4,329
Discovery Miles 43 290
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R746
Discovery Miles 7 460
Introduction to Medical Electronics…
L. Nokes, D. Jennings, …
Paperback
R1,340
Discovery Miles 13 400
|