![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Applied physics & special topics > Biophysics
Plasma Medical Science describes the progress that has been made in the field over the past five years, illustrating what readers must know to be successful. As non-thermal, atmospheric pressure plasma has been applied for a wide variety of medical fields, including wound healing, blood coagulation, and cancer therapy, this book is a timely resource on the topics discussed.
1 Theoretical Background.- 2 Theoretical Calculations on Small Amino Acids.- 3 Gamma-Aminobutyric Acid (GABA).- 4 The Diaminobutyric (DABA), Delta Aminopentanoic, and Epsilon Aminohexanoic Acids.- 5 Ab Initio Studies of Some Acids and Basic Amino Acids: Aspartic, Glutamic, Arginine, and Deaminoarginine.- 6 Proline.- 7 Taurine and Hypotaurine.- 8 Ab Initio Calculations Related to Glucagon.- 9 The Alpha Factor.- 10 Tight Turns in Proteins.- 11 Some Small Peptides.- 12 Oligopeptides That Are Anticancer Drugs.- Appendix Theoretical Studies of a Glucagon Fragment: Ser8-Asp9-Tyr10.
This is a research-level review volume. It presents both the fundamentals and the advanced research results, covering most part of important aspects of synchrotron radiation applications. Among the broad subjects of synchrotron radiation applications, as the main content of this book we have applications in VUV, soft X-rays, hard X-rays and XFEL (X-ray free electron laser) and important applications by various synchrotron-based techniques and methods, such as ARPES (angle-resolved photoemission spectroscopy), VUV photo-ionization spectroscopy, X-ray absorption/emission spectroscopy and X-ray absorption fine structure, X-ray diffraction, small angle X-ray scattering, X-ray excited optical luminescence, imaging and high pressure techniques.
This book is an attempt to trace the majestic immense journey from the coming into being of the universe to the emergence and evolution of life. It is intended to complement the many excellent books that cover different aspects of this journey. The contents have been classified into five parts. Part I covers the coming into existence of the universe while Part II presents the beginning of life on the early Earth, following which Part III discusses the emergence of consciousness and intelligence, and Part IV, the immense journey of the universe beyond Earth. Finally, Part V addresses the problems raised by the rise of higher-order consciousness in human beings as captured by the phrase 'the human condition'.
This book is an attempt to trace the majestic immense journey from the coming into being of the universe to the emergence and evolution of life. It is intended to complement the many excellent books that cover different aspects of this journey. The contents have been classified into five parts. Part I covers the coming into existence of the universe while Part II presents the beginning of life on the early Earth, following which Part III discusses the emergence of consciousness and intelligence, and Part IV, the immense journey of the universe beyond Earth. Finally, Part V addresses the problems raised by the rise of higher-order consciousness in human beings as captured by the phrase 'the human condition'.
Easily Get Started with Biological Experiments Introduction to Experimental Biophysics - A Laboratory Guide presents wet lab methods for courses in biophysics or molecular biology. A companion to the author's highly praised An Introduction to Experimental Biophysics: Biological Methods for Physical Scientists, this manual offers a flexible course plan that permits completion of the labs in either a full term or intensive summer course. Tested in a pedagogical setting, the experiments follow a logical progression beginning with a DNA construct. The book starts with the basics of molecular cloning: amplifying and purifying plasmid, plasmid mapping, and using restriction enzymes. Later experiments deal with more advanced, emerging techniques, such as the synthesis and characterization of quantum dots and gold nanoparticles, protein crystallization, and spectroscopic techniques. This accessible guide will help both students and instructors in molecular biology, biophysics, and biomedical engineering. Students will understand how to use a variety of techniques in biological experiments while instructors will get practical guidance on preparing the experiments.
This book gives an accessible, detailed overview on techniques of single molecule biophysics (SMB), showing how they are applied to numerous biological problems associated with understanding the molecular mechanisms of DNA replication, transcription, and translation, as well as functioning of molecular machines. It covers major single molecule imaging and probing techniques, highlighting key strengths and limitations of each method using recent examples. The chapters begin with a discussion of single molecule fluorescence techniques followed by an overview of the atomic force microscope and its use for direct time-lapse visualization of dynamics of molecular complexes at the nanoscale, as well as applications in measurements of interactions between molecules and mechanical properties of isolated molecules and their complexes. The next chapters address magnetic tweezers and optical tweezers, including instrumentation, fundamentals of operation, and applications. A final chapter turns to nanopore transport and nanopore-based DNA sequencing technology that will play a major role in next-generation genomics and healthcare applications.
This book gives detailed information about the fabrication, properties and applications of nanoporous alumina. Nanoporous anodic alumina prepared by low-cost, simple and scalable electrochemical anodization process due to its unique structure and properties have attracted several thousand publications across many disciplines including nanotechnology, materials science, engineering, optics, electronics and medicine. The book incorporates several themes starting from the understanding fundamental principles of the formation nanopores and theoretical models of the pore growth. The book then focuses on describing soft and hard modification techniques for surface and structural modification of pore structures to tailor specific sensing, transport and optical properties of nano porous alumina required for diverse applications. These broad applications including optical biosensing, electrochemical DNA biosensing, molecular separation, optofluidics and drug delivery are reviewed in separated book chapters. The book appeals to researchers, industry professionals and high-level students.
'The book is highly recommended as a reference for advanced graduate students and scholars involved in geometric analysis of membranes and other elastic surfaces. Valuable techniques may be learned from the bookaEURO (TM)s model constructions and sequential derivations and presentations of governing equations. Detailed analysis and solutions enable the reader with an increased understanding of the physical characteristics of membranes in liquid crystal phases such as their preferred shapes.'Contemporary PhysicsThis is the second edition of the book Geometric Methods in Elastic Theory of Membranes in Liquid Crystal Phases published by World Scientific in 1999. This book gives a comprehensive treatment of the conditions of mechanical equilibrium and the deformation of membranes as a surface problem in differential geometry. It is aimed at readers engaging in the field of investigation of the shape formation of membranes in liquid crystalline state with differential geometry. The material chosen in this book is mainly limited to analytical results. The main changes in this second edition are: we add a chapter (Chapter 4) to explain how to calculate variational problems on a surface with a free edge by using a new mathematical tool - moving frame method and exterior differential forms - and how to derive the shape equation and boundary conditions for open lipid membranes through this new method. In addition, we include the recent concise work on chiral lipid membranes as a section in Chapter 5, and in Chapter 6 we mention some topics that we have not fully investigated but are also important to geometric theory of membrane elasticity.
Conference papers in five categories: experimental approaches to the study of charge and energy transfer in biomacromolecular and intact cellular systems; ion and electron transport properties of biological and artificial membranes; effects of electrochemical processes and electromagnetic fields on biological systems; photo-induced bioelectrochemic
This book presents research advances in the theory of medical physics and its application in various sectors of biomedical engineering. It gathers best selected research papers presented at International Conference on Advances in Medical Physics and Healthcare Engineering (AMPHE 2020), organized by the Department of Physics (in collaboration with the School of Engineering and Technology) Adamas University, Kolkata, India. The theme of the book is interdisciplinary in nature; it interests students, researchers and faculty members from biomedical engineering, biotechnology, medical physics, life sciences, material science and also from electrical, electronics and mechanical engineering backgrounds nurturing applications in biomedical domain.
All sorts of biological activities are processed thermodynamically, and at the utmost fundamental level, the laws of biology must be thermodynamics. However, the current laws of thermodynamics are unable to give reasonable explanation of biological processes. In order to do so, irreversible thermodynamics has been theorized to describe the basic mechanism for the origin of natural order or the development of things (related to developmental biology). The scientific definition of the system theory concept has been obtained and the properties of a biological system can be analyzed by applying principles of it. Irreversible thermodynamics and system theory act as the theoretical foundation for theoretical biology. By applying principles of irreversible thermodynamics and system theory, the axiomatic theory of biology has been developed.
Seaweed Polysaccharides: Isolation, Biological, and Biomedical Applications examines the isolation and characterization of algal biopolymers, including a range of new biological and biomedical applications. In recent years, significant developments have been made in algae-based polymers (commonly called polysaccharides), and in biomedical applications such as drug delivery, wound dressings, and tissue engineering. Demand for algae-based polymers is increasing and represent a potential-very inexpensive-resource for these applications. The structure and chemical modification of algal polymers are covered, as well as the biological properties of these materials - including antithrombic, anti-inflammatory, anticoagulant, and antiviral aspects. Toxicity of algal biopolymers is also covered. Finally, the book introduces and explains real world applications of algal-based biopolymers in biomedical applications, including tissue engineering, drug delivery, and biosensors. This is the first book to cover the extraction techniques, biomedical applications, and the economic perspective of seaweed polysaccharides. It is an essential text for researchers and industry professionals looking to work with this renewable resource.
In Vivo Models to Study Angiogenesis provides the latest information and an overview of the most common assays for studying angiogenesis in vivo. Under physiological conditions, angiogenesis is tightly controlled, whereas increased production of angiogenic stimuli and/or reduced production of angiogenic inhibitors leads to abnormal neovascularization, such as occurs in cancer, chronic inflammatory disease, diabetic retinopathy, macular degeneration and cardiovascular disorders. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. This book presents the latest information from the extensive literature and research available. Evidence is now emerging that blood vessels themselves have the ability to provide instructive regulatory signals to surrounding non-vascular target cells during organ development. Thus, endothelial cell signaling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodeling.
Detailed report on a topic that has already attracted much popular interest. Provides fascinating reading for physicists, biologists and general readers alike.
Finding the Nerve: The Story of Impedance Neurography discusses research that elucidates the nature of nerve simulation via externally applied electrical fields, and how it has led to an entirely new understanding of neuronal cell membrane biophysics and defined a novel nerve imaging technology. It details how these discoveries came about and the nature of research that derives from unexplained clinical observations. The primary technology, impedance neurography, is a wholly new way of nerve-specific visualization in 2-D or 3-D, with the ability to define both normal and abnormal functioning of nerves, heretofore unavailable from techniques such as MRI neurography. This is of particular importance with respect to the obesity epidemic where physicians performing nerve-related procedures cannot use ultrasound visualization due to the depth limitations of that technology.
This book gives an accessible, detailed overview on techniques of single molecule biophysics (SMB), showing how they are applied to numerous biological problems associated with understanding the molecular mechanisms of DNA replication, transcription, and translation, as well as functioning of molecular machines. It covers major single molecule imaging and probing techniques, highlighting key strengths and limitations of each method using recent examples. The chapters begin with a discussion of single molecule fluorescence techniques followed by an overview of the atomic force microscope and its use for direct time-lapse visualization of dynamics of molecular complexes at the nanoscale, as well as applications in measurements of interactions between molecules and mechanical properties of isolated molecules and their complexes. The next chapters address magnetic tweezers and optical tweezers, including instrumentation, fundamentals of operation, and applications. A final chapter turns to nanopore transport and nanopore-based DNA sequencing technology that will play a major role in next-generation genomics and healthcare applications.
Analytical ultracentrifugation is one of the most powerful solution techniques for the study of macromolecular interactions, to define the number and stoichiometry of complexes formed, and to measure affinities ranging from very strong to very weak and repulsive. Building on the data analysis tools described in the volume Sedimentation Velocity Analytical Ultracentrifugation: Discrete Species and Size-Distributions of Macromolecules and Particles, and the experimental and instrumental aspects in the first volume Basic Principles of Analytical Ultracentrifugation, the present volume Sedimentation Velocity Analytical Ultracentrifugation: Interacting Systems is devoted to the theory and practical data analysis of dynamically coupled sedimentation processes. This volume is designed to fill a gap in biophysical methodology to provide a framework that builds on the fundamentals of the highly developed traditional methods of analytical ultracentrifugation, updated with current methodology and from a viewpoint of modern applications. It will be an invaluable resource for researchers and graduate students interested in the application of analytical ultracentrifugation in the study of interacting systems, such as biological macromolecules, multi-protein complexes, polymers, or nanoparticles.
"a gem of a textbook which manages to produce a genuinely fresh, concise yet comprehensive guide" -Mark Leake, University of York "destined to become a standard reference.... Not just a 'how to' handbook but also an accessible primer in the essentials of kinetic theory and practice." -Michael Geeves, University of Kent "covers the entire spectrum of approaches, from the traditional steady state methods to a thorough account of transient kinetics and rapid reaction techniques, and then on to the new single molecule techniques" -Stephen Halford, University of Bristol This illustrated treatment explains the methods used for measuring how much a reaction gets speeded up, as well as the framework for solving problems such as ligand binding and macromolecular folding, using the step-by-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to femtoscale studies. Kinetics is more important now than ever, and this book is a vibrant and approachable entry for anyone who wants to understand mechanism using transient or single molecule kinetics without getting bogged down in advanced mathematics. Clive R. Bagshaw is Emeritus Professor at the University of Leicester, U.K., and Research Associate at the University of California at Santa Cruz, U.S.A.
"a gem of a textbook which manages to produce a genuinely fresh, concise yet comprehensive guide" -Mark Leake, University of York "destined to become a standard reference.... Not just a 'how to' handbook but also an accessible primer in the essentials of kinetic theory and practice." -Michael Geeves, University of Kent "covers the entire spectrum of approaches, from the traditional steady state methods to a thorough account of transient kinetics and rapid reaction techniques, and then on to the new single molecule techniques" -Stephen Halford, University of Bristol This illustrated treatment explains the methods used for measuring how much a reaction gets speeded up, as well as the framework for solving problems such as ligand binding and macromolecular folding, using the step-by-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to femtoscale studies. Kinetics is more important now than ever, and this book is a vibrant and approachable entry for anyone who wants to understand mechanism using transient or single molecule kinetics without getting bogged down in advanced mathematics. Clive R. Bagshaw is Emeritus Professor at the University of Leicester, U.K., and Research Associate at the University of California at Santa Cruz, U.S.A.
Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological systems, in particular proteins, do not exist in unique conformations but can assume a very large number of slightly different structures. This complexity is captured in the concept of a free energy landscape and leads to the conclusion that fluctuations are crucial for the functioning of biological systems. The final chapter of this section challenges the reader to apply these concepts to a problem that appears in the current literature. An extensive series of appendices (Part V) provide descriptions of the key physical tools and analytical methods that have proven powerful in the study of the physics of proteins. The appendices are designed to be consulted throughout the section on protein dynamics without breaking the deductive flow of the logic in the central section of the book.
RNA Modification, Volume 41 examines the powerful ability to regulate the function of RNA molecules or modify the message transmitted by RNA molecules. Chapters in this newly released volume include The Importance of Being Modified: Modifications Shape RNA Function through Chemistry, Structure and Dynamics, The evolution of multi-substrate specificity by RNA modification enzymes, TrmD: a methyl transferase for tRNA methylation with m1G37, Structures and activities of the Elongator complex and its co-factors, RNA pseudouridylation: Mechanism and Function, The activity of 5'3' exonucleases on hypo modified tRNA substrates and other structured RNAs, and the Synthesis, heterogeneity and function of post-transcriptional nucleotide modifications in eukaryotic ribosomal RNAs. This field has recently seen a very rapid progress in the understanding of the mechanism and enzymes involved in RNA modification. This volume presents some of the most recent advances in the identification and function of enzymes involved in modifying RNA molecules.
Experimental microdosimetry deals with the measurement of charged particle energy deposition in tissue equivalent volumes, ranging in size from nanometres to micrometres. Microdosimetry is employed to improve our understanding of the relationship between radiation energy deposition, the resulting biological effects, and the appropriate quantities to be used in characterizing and quantifying radiation quality. Although many reviews and contributions to the field have been published over the past fifty years, this new book is the first to provide a single, up to date, and easily accessible account of experimental microdosimetry. This book is designed to be used in medical, radiation, and health physics courses and by Master's and PhD students. In addition to serving as an introductory text to the field for graduate students, this book will also be of interest as a teaching and reference resource for graduate supervisors and established researchers. Drs. Lennart Lindborg and Anthony Waker have spent a life-time career in experimental microdosimetry research in academic, industrial and regulatory environments and have observed the development of the field from its early days as a recognized discipline; they bring to this book particular knowledge and experience in the design, construction, operation and use of tissue equivalent gas ionization counters and chambers. |
You may like...
Protein and Peptide-based Microarrays…
Navid Rabiee, Michael R. Hamblin
Paperback
R746
Discovery Miles 7 460
The Chlamydomonas Sourcebook - Volume 2…
Arthur Grossman, Francis-Andre Wollman
Hardcover
R4,967
Discovery Miles 49 670
Open-Channel Microfluidics…
Jean Berthier, Ashleigh B. Theberge, …
Paperback
R756
Discovery Miles 7 560
|