![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences
This book provides a straightforward and easy-to-understand overview of beneficial plant-bacterial interactions. It features a wealth of unique illustrations to clarify the text, and each chapter includes study questions that highlight the important points, as well as references to key experiments. Since the publication of the first edition of Beneficial Plant-Bacterial Interactions, in 2015, there has been an abundance of new discoveries in this area, and in recent years, scientists around the globe have begun to develop a relatively detailed understanding of many of the mechanisms used by bacteria that facilitate plant growth and development. This knowledge is gradually becoming an integral component of modern agricultural practice, with more and more plant growth-promoting bacterial strains being commercialized and used successfully in countries throughout the world. In addition, as the world's population continues to grow, the pressure for increased food production will intensify, while at the same time, environmental concerns, mean that environmentally friendly methods of food production will need to replace many traditional agricultural practices such as the use of potentially dangerous chemicals. The book, intended for students, explores the fundamentals of this new paradigm in agriculture, horticulture, and environmental cleanup.
This fourth edition provides new and updated protocols on plant cell, tissue, and organ cultures. Chapters are divided into five parts that cover topics from general methodologies, statistical analysis and contamination control, highly specialized techniques, and laborious process of measuring the epigenetics changes in tissue cultures. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Plant Cell Culture Protocols, Fourth Edition aims to serve both professionals and novices with its guide to the most common and applicable techniques and methods for plant tissue and cell culture.
With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.
This book provides a detailed review of many different aspects of pathogens, from the effects of single base pair mutations to large-scale control options, bringing into a single volume over 100 years of findings from thousands of researchers worldwide. Diseases caused by soft rot Pectobacteriaceae (SRP) are a major cause of loss to crop, vegetables and ornamental plants worldwide, and have been found on all continents except Antarctica. While different aspects of the SRP have appeared in other books on plant disease, no book, until now, has been dedicated solely to them.
This book focuses on the latest genome sequencing of the 25 wild Oryza species, public and private genomic resources, and their impact on genetic improvement research. It also addresses the untapped reservoir of agronomically important traits in wild Oryza species. Rice is a model crop plant that is frequently used to address several basic questions in plant biology, yet its wild relatives offer an untapped source of agronomically important alleles that are absent in the rice gene pool. The genus Oryza is extremely diverse, as indicated by a wide range of chromosome numbers, different ploidy levels and genome sizes. After a 13-year gap from the first sequencing of rice in the 2002, the genomes of 11 wild Oryza species have now been sequenced and more will follow. These vast genomic resources are extremely useful for addressing several basic questions on the origin of the genus, evolutionary relationships between the species, domestication, and environmental adaptation, and also help to substantiate molecular breeding and pre-breeding work to introgress useful characters horizontally from wild species into cultivated rice.
This book gives a comprehensive overview on the various aspects of Trichoderma, a filamentous fungus ubiquitously present in soil. Topics addressed are the biology, diversity, taxonomy, ecology, biotechnology and cultivation of Trichoderma, to just name a few. Basic as well as applied aspects are covered and a special focus is given on use of Trichoderma in agriculture and beyond. Trichoderma species are widely distributed throughout the world in soil, rotting plant material, and wood. Although they are often considered as a contaminants, Trichoderma species are also known for their ability to act as biocontrol agents against various plant pathogens and plant diseases, and also as biostimulants promoting plant growth. The contents of this book will be of particular interest to, agricultural scientists, biotechnologists, plant pathologists, mycologists, and microbiologists, students, extension workers, policy makers and other stakeholders.
This fourth volume of the Flora of Florida collection continues the definitive and comprehensive identification manual to the Sunshine State's 4,000 kinds of native and non-native ferns and fern allies, nonflowering seed plants, and flowering seed plants. Volume IV contains the taxonomic treatments of 31 families of Florida's dicotyledons. With keys to family, genus, and species, and with families arranged alphabetically for easy reference, the Flora of Florida volumes are the standard reference for botanists, researchers, consultants, and students alike.
This book focuses on the application of nanotechnology in medicine and drug delivery, including diagnosis and therapy. Nanomedicine can contribute to the development of a personalized medicine both for diagnosis and therapy. By interacting with biological molecules at nanoscale level, nanotechnology opens up an immense field of research and applications. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside human cells. Operating at nanoscale allows exploitation of physical properties different from those observed at microscale, such as the volume to surface area ratio. A number of clinical applications of nanobiotechnology, such as disease diagnosis, target-specific drug delivery, and molecular imaging are being investigated. Some promising new products are also undergoing clinical trials. Such advanced applications of this approach to biological systems will undoubtedly transform the foundations of diagnosis, treatment, and prevention of disease in the future. Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested each year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013. As the nanomedicine industry continues to grow, it is expected to have a significant impact on the global economy. This book provides clear, colorful and simple illustrations, tables, and case studies to clearly convey the content to a general audience and reader. This book also discusses the development of nanobiomaterials from biogenic (biological sources) systems for healthcare and disease therapies. This book, therefore, is useful for researchers and academicians in the fields of nanotechnology, medicine, nano-biotechnology and pharmacology.
This book systematically discusses the vegetation dynamics in northern China since the LGM, with a focus on three dominant tree species (Pinus, Quercus and Betula). By integrating methods of palaeoecology, phylogeography and species distribution model, it reconstructs the glacial refugia in northern China, demonstrating that the species were located further north than previously assumed during the LGM. The postglacial dynamics of forest distribution included not only long-distance north-south migration but also local spread from LGM micro-refugia in northern China. On the regional scale, the book shows the altitudinal migration pattern of the three dominant tree genera and the role of topographical factors in the migration of the forest-steppe border. On the catchment scale, it analyzes Huangqihai Lake, located in the forest-steppe ecotone in northern China, to indentify the local forest dynamics response to the Holocene climatic change. It shows that local forests have various modes of response to the climate drying, including shrubland expansion, savannification and replacement of steppe. In brief, these studies at different space-time scales illustrate the effects of climate, topography and other factors on forest migration.
Pigeonpea (Cajanus cajan) is a crop of small land holding farmers in arid and semi-arid regions of the world. It has a number of usages starting from protein rich food to vegetarian families; fuel wood; nitrogen supplier to soil; recycling minerals in soil to animal feed etc. Pigeonpea has been considered to be originated and domesticated in central India from where it travelled to different parts of the world such as Africa and Latin America. In ongoing scenario of climate change, biotic and especially abiotic stresses will make the conditions more challenging for entire agriculture. This volume focusing on the pigeonpea genome will collate the information on the genome sequencing and its utilization in genomics activities, with a focus on the current findings, advanced tools and strategies deployed in pigeonpea genome sequencing and analysis, and how this information is leading to direct outcomes for plant breeders and subsequently to farmers.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
Environmental and specific diversity in the Chihuahuan desert in general, and in the Cuatro Cienegas Basin in particular, has long been recognized as outstanding. This book provides a global ecological overview, together with in-depth studies of specific processes. The Chihuahuan desert is the warmest in North America, and has a complex geologic, climatic and biogeographical history, which affects today's distribution of vegetation and plants and generates complex phylogeographic patterns. The high number of endemic species reflects this complex set of traits. The modern distribution of environments, including aquatic and subaquatic systems, riparian environments, gypsum dunes and gypsum-rich soils, low levels of phosphorous and organic matter, and high salinity combined with an extreme climate call for a range of adaptations. Plants are distributed in a patchy pattern based on punctual variations, and many of them respond to different resources and conditions with considerable morphological plasticity. In terms of physiological, morphological and ecological variability, cacti were identified as the most important group in specific environments like bajadas, characterized by high diversity values, while gypsophytes and gypsovagues of different phylogenies, including species with restricted distribution and endemics.
Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants presents information on the complex mechanisms regulating micronutrient use efficiency in plants. Understanding this science is essential for the development of new varieties of crop plants that are more resilient to micronutrient stress, as well as plants with increased bioavailable concentrations of essential micronutrients. This book explores the discovery of novel genes and key metabolic pathways associated with micronutrient use efficiency in plants, gives an analyses of the gene expression patterns in plants in response to low and/or high nutrient levels, and investigates the potential functions of these genes and their products. Strategies to enhance micronutrient use efficiency and stress tolerance, to develop bio-fortified crop, and to improve the sustainable utilization of natural resources are critically evaluated. The book contains both fundamental and advanced information as well as critical commentaries that are useful for those involved in the various fields that make up the plant sciences.
Pennsylvania, a state of diverse geography and geology, is rich in flora. The second edition of The Plants of Pennsylvania identifies the nearly 3,400 species of trees, wildflowers, ferns, grasses, sedges, aquatic plants, and weeds native to or naturalized in the Commonwealth. Retaining the clearly written identification keys and descriptions that made the first edition such an essential reference, this new edition has been reorganized to reflect recent advances in our understanding of plant relationships. Families and genera are listed in a sequence determined by current studies of plant molecular genetics, thus providing new insights for the study of botany. In addition, species have been added to the book as a result of new discoveries. The botanical illustrations of Anna Anisko continue to complement the descriptions and add an element of beauty to the volume. Developed in conjunction with the Pennsylvania Flora Project, and compiled by botanists at the Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania, the second edition of The Plants of Pennsylvania is the authoritative guide to Pennsylvania's plant life. It will be indispensable to taxonomists, conservationists, ecologists, foresters, land planners, teachers, agricultural county agents, students, and amateur naturalists.
Seeds: Ecology, Biogeography, and Evolution of Dormancy and
Germination differs from all other books on seed germination. It is
an all-encompassing volume that provides a working hypothesis of
the ecological and environmental conditions under which various
kinds of seed dormancy have developed. It also presents information
on the seed germination of more than 3500 species of trees, shrubs,
vines and herbaceous species, making this a valuable reference for
anyone studying germination. |
![]() ![]() You may like...
Mushrooms and Other Fungi of South…
Marieka Gryzenhout, Gary Goldman
Paperback
How To Identify Trees In South Africa
Braam van Wyk, Piet Van Wyk
Paperback
Toxicity of Nanoparticles in Plants - An…
Vishnu D. Rajput, Tatiana Minkina, …
Paperback
R4,069
Discovery Miles 40 690
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R4,069
Discovery Miles 40 690
Phytoremediation - Biotechnological…
Rouf Ahmad Bhat, Fernanda Maria Polic Tonelli, …
Paperback
R4,150
Discovery Miles 41 500
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,597
Discovery Miles 35 970
Long Noncoding RNAs in Plants - Roles in…
Santosh Kumar Upadhyay
Paperback
R4,133
Discovery Miles 41 330
|