![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences
Pigeonpea (Cajanus cajan) is a crop of small land holding farmers in arid and semi-arid regions of the world. It has a number of usages starting from protein rich food to vegetarian families; fuel wood; nitrogen supplier to soil; recycling minerals in soil to animal feed etc. Pigeonpea has been considered to be originated and domesticated in central India from where it travelled to different parts of the world such as Africa and Latin America. In ongoing scenario of climate change, biotic and especially abiotic stresses will make the conditions more challenging for entire agriculture. This volume focusing on the pigeonpea genome will collate the information on the genome sequencing and its utilization in genomics activities, with a focus on the current findings, advanced tools and strategies deployed in pigeonpea genome sequencing and analysis, and how this information is leading to direct outcomes for plant breeders and subsequently to farmers.
Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants presents information on the complex mechanisms regulating micronutrient use efficiency in plants. Understanding this science is essential for the development of new varieties of crop plants that are more resilient to micronutrient stress, as well as plants with increased bioavailable concentrations of essential micronutrients. This book explores the discovery of novel genes and key metabolic pathways associated with micronutrient use efficiency in plants, gives an analyses of the gene expression patterns in plants in response to low and/or high nutrient levels, and investigates the potential functions of these genes and their products. Strategies to enhance micronutrient use efficiency and stress tolerance, to develop bio-fortified crop, and to improve the sustainable utilization of natural resources are critically evaluated. The book contains both fundamental and advanced information as well as critical commentaries that are useful for those involved in the various fields that make up the plant sciences.
Bioassays: Advanced Methods and Applications provides a thorough understanding of the applications of bioassays in monitoring toxicity in aquatic ecosystems. It reviews the newest tests and applications in discovering compounds and toxins in the environment, covering all suitable organisms, from bacteria, to microorganisms, to higher plants, including invertebrates and vertebrates. By learning about newer tests, water pollution control testing can be less time and labor consuming, and less expensive. This book will be helpful for anyone working in aquatic environments or those who need an introduction to ecotoxicology or bioassays, from investigators, to technicians and students.
This book addresses all the major mechanisms by which endophytes are thought to impact plant growth and health. A unique aspect of this publication is that it is multidisciplinary, covering plant microbiology, plant physiology, fungal and bacterial endophytes, plant biochemistry, and genomics. Just as research on the mammalian microbiome has demonstrated its importance for overall health of the host, the plant microbiota is essential for plant health in natural environments. Endophytes, the microorganisms living fully within plants, can provide a multitude of benefits to the host including N-fixation, P solubilization, increased photosynthetic efficiency and water use efficiency, stress tolerance, pathogen resistance, and overall increased growth and health. A variety of culturable endophytes have been isolated and shown to be mutualistic symbionts with a broad range of plant species. These studies point to the functional importance of the microbiota of plants and suggest the potential for tailoring plant microbiota for improved vigor and yields with reduced inputs. This review covers the major benefits of microbial endophytes to plants and discusses the implications of using symbiosis as an alternative to chemical inputs for agriculture, forestry, and bioenergy.
Advances in Agronomy continues to be recognized as a leading reference and first-rate source for the latest research in agronomy. Each volume contains an eclectic group of reviews by leading scientists throughout the world. As always, the subjects covered are rich, varied, and exemplary of the abundant subject matter addressed by this long-running serial.
This book systematically discusses the vegetation dynamics in northern China since the LGM, with a focus on three dominant tree species (Pinus, Quercus and Betula). By integrating methods of palaeoecology, phylogeography and species distribution model, it reconstructs the glacial refugia in northern China, demonstrating that the species were located further north than previously assumed during the LGM. The postglacial dynamics of forest distribution included not only long-distance north-south migration but also local spread from LGM micro-refugia in northern China. On the regional scale, the book shows the altitudinal migration pattern of the three dominant tree genera and the role of topographical factors in the migration of the forest-steppe border. On the catchment scale, it analyzes Huangqihai Lake, located in the forest-steppe ecotone in northern China, to indentify the local forest dynamics response to the Holocene climatic change. It shows that local forests have various modes of response to the climate drying, including shrubland expansion, savannification and replacement of steppe. In brief, these studies at different space-time scales illustrate the effects of climate, topography and other factors on forest migration.
This book focuses on the morphology, exine ornamentation and the associated evolutionary trends of crabapple pollen and anatomical developmental patterns. To examine the genetic evolutionary patterns of crabapple pollen traits, we constructed an interval distribution function based on characteristic pollen parameters and used a binary trivariate data matrix (Xi Yi Zi) to reflect the exine ornamentation regularity of the pollen. Our findings should inform the taxonomic status of the genus Malus. Pollen electron micrographs from a total of 26 species and 81 cultivars of Malus were recorded in this book. All 107 figures and 642 scanned pollen images constitute primary data obtained by the authors. The images in this book are clear, three-dimensional, and aesthetically pleasing. They are accompanied with text descriptions and provided a method for the indication of the different types of information that can be expected. This book can provide a reference for scientific researchers, students, and teachers in tertiary institutions that are engaged in research concerning crabapple production.
This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.
This volume covers a wide range of methods to measure cellular respiration and internal oxygen in various tissues under different conditions. Chapters guide readers through informative experimental approaches, calorespirometry, isotope fractionation techniques, protocols for dual-inlet isotope ratio mass spectrometry, laser-capture microdissection, and bioinformatics approach for exploring the co-regulation of AOX gene family members. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Respiration and Internal Oxygen: Methods and Protocols aims to be helpful for all students and researchers interested in the determination of respiration and internal oxygen.
Plants offer some of the most elegant applications of soft matter principles in Nature. Understanding the interplay between chemistry, physics, biology, and fluid mechanics is critical to forecast plant behaviour, which is necessary for agriculture and disease management. It also provides inspiration for novel engineering applications. Starting with fundamental concepts around plant biology, physics of soft matter and viscous fluids, readers of this book will be given a cross-disciplinary and expert grounding to the field. The book covers local scale aspects, such as cell and tissue mechanics, to regional scale matters covering movement, tropism, roots, through to global scale topics around fluid transport. Focussed chapters on water stress, networks, and biomimetics provide the user with a concise and complete introduction. Edited by internationally recognised leading experts in this field with contributions from key investigators worldwide, this book is the first introduction to the subject matter and will be suitable for both physical and life science readers.
White biotechnology, or industrial biotechnology as it is also known, refers to the use of living cells and/or their enzymes to create industrial products that are more easily degradable, require less energy, create less waste during production and sometimes perform better than products created using traditional chemical processes. Over the last decade considerable progress has been made in white biotechnology research, and further major scientific and technological breakthroughs are expected in the future. Fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity and pH), and may be associated with plants (epiphytic, endophytic and rhizospheric). The fungal strains are beneficial as well as harmful for human beings. The beneficial fungal strains may play important roles in the agricultural, industrial, and medical sectors. The fungal strains and their products (enzymes, bioactive compounds, and secondary metabolites) are very useful for industry (e.g., the discovery of penicillin from Penicillium chrysogenum). This discovery was a milestone in the development of white biotechnology as the industrial production of penicillin and antibiotics using fungi moved industrial biotechnology into the modern era, transforming it into a global industrial technology. Since then, white biotechnology has steadily developed and now plays a key role in several industrial sectors, providing both high value nutraceutical and pharmaceutical products. The fungal strains and bioactive compounds also play an important role in environmental cleaning. This volume covers the latest developments and research in white biotechnology with a focus on diversity and enzymes.
The African and Arabian Moringa Species: Chemistry, Bioactivity and Therapeutic Applications reviews the botany, socioeconomic significance and underlying chemistry of these interesting plants. The book begins by addressing the botanical and socioeconomic aspect of M. stenopetala, one of the most widely cultivated species within the genus. Next, it reviews the chemistry of the plant, with a systematic presentation covering the seed oil, various secondary metabolites, and issues relating to quality control. Final sections address the chemistry behind the reported use of the plant for the management of various diseases, highlighting potential antioxidant, antimicrobial, antidiabetic, anticancer properties and more. Other African and Arabian Moringa species, from their botany, to their chemical and pharmacological profiles are also included. Drawing on the author's latest research and the most current literature in the field, this book is an invaluable guide for researchers in medicinal chemistry, herbal medicine, drug discovery/development, and plant derived natural products within both industry and academic environments.
This book presents a compilation of case studies from different countries on achieving agricultural sustainability. The book stresses that, in order to meet the needs of our rapidly growing population, it is imperative to increase agricultural productivity. If global food production is to keep pace with an increasing population, while formulating new food production strategies for developing countries, the great challenge for modern societies is to boost agricultural productivity. Today, the application of chemicals to enhance plant growth or induced resistance in plants is limited due to the negative effects of chemical treatment and the difficulty of determining the optimal concentrations to benefit the plant. In the search for alternative means to solve these problems, biological applications have been extensively studied. Naturally occurring plant-microbe-environment interactions are utilized in many ways to enhance plant productivity. As such, a greater understanding of how plants and microbes coexist and benefit one another can yield new strategies to improve plant productivity in the most sustainable way. Developing sustainable agricultural practices requires understanding both the basic and applied aspects of agriculturally important microorganisms, with a focus on transforming agricultural systems from being nutrient-deficient to nutrient-rich. This work is divided into two volumes, the aim being to provide a comprehensive description and to highlight a holistic approach, respectively. Taken together, the two volumes address the fundamentals, applications, research trends and new prospects of agricultural sustainability. Volume one consists of two sections, with the first addressing the role of microbes in sustainability, and the second exploring beneficial soil microbe interaction in several economically important crops. Section I elucidates various mechanisms and beneficial natural processes that enhance soil fertility and create rhizospheric conditions favourable for high fertility and sustainable soil flora. It examines the mechanism of action and importance of rhizobacteria and mycorrhizal associations in soil. In turn, section II presents selected case studies involving economically important crops. This section explains how agriculturally beneficial microbes have been utilized in sustainable cultivation with high productivity. Sustainable food production without degrading the soil and environmental quality is a major priority throughout the world, making this book a timely addition. It offers a comprehensive collection of information that will benefit students and researchers working in the field of rhizospheric mechanisms, agricultural microbiology, biotechnology, agronomy and sustainable agriculture, as well as policymakers in the area of food security and sustainable agriculture. |
You may like...
Flora of North America: Volume 3…
Flora of North America Editorial Committee, Nancy R. Morin
Hardcover
R2,475
Discovery Miles 24 750
Forest Microbiology Vol.3_Tree Diseases…
Fred O. Asiegbu, Andriy Kovalchuk
Paperback
R3,925
Discovery Miles 39 250
Fundamentals of Viroid Biology
Charith Raj Adkar-Purushothama, Teruo Sano, …
Paperback
R2,486
Discovery Miles 24 860
Plant RNA Viruses - Molecular…
Rajarshi Kumar Gaur, Basavaprabhu L. Patil, …
Paperback
R3,472
Discovery Miles 34 720
Mitigation of Plant Abiotic Stress by…
Gustavo Santoyo, Ajay Kumar, …
Paperback
R4,171
Discovery Miles 41 710
Phytoremediation - Biotechnological…
Rouf Ahmad Bhat, Fernanda Maria Polic Tonelli, …
Paperback
R4,003
Discovery Miles 40 030
|