![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
"Transformation and Utilization of Carbon Dioxide"shows the various organic, polymeric and inorganic compounds which result from the transformation of carbon dioxide through chemical, photocatalytic, electrochemical, inorganic and biological processes. The book consists of twelve chapters demonstrating interesting examples of these reactions, depending on the types of reaction and catalyst. It also includes two chapters dealing with the utilization of carbon dioxide as a reaction promoter and presents a wide range of examples of chemistry and chemical engineering with carbon dioxide. "Transformation and Utilization of Carbon Dioxide"is a collective work of reviews illustrative of recent advances in the transformation and utilization of carbon dioxide. This book is interesting and useful to a wide readership in the various fields of chemical science and engineering. Bhalchandra Bhanage is a professor of industrial and engineering chemistry at Institute of Chemical Technology, India. Masahiko Arai is a professor of chemical engineering at Hokkaido University, Japan."
In this thesis, Andrew Logsdail demonstrates that computational chemistry is a powerful tool in contemporary nanoscience, complementing experimental observations and helping guide future experiments. The aim of this particular PhD is to further our understanding of structural and compositional preferences in gold nanoparticles, as well as the compositional and chemical ordering preferences in bimetallic nanoalloys formed with other noble metals, such as palladium and platinum. Highlights include: calculations of the structural preferences and optical-response of gold nanoparticles and gold-containing nanoalloys; the design and implementation of novel numerical algorithms for the structural characterisation of gold nanoparticles from electron microscopy images; and electronic structure calculations investigating the interaction of gold nanoparticles with graphene and graphite substrates.The results presented here have significant implications for future research on the chemical and physical properties of gold-based nanoparticles and are of interest to many researchers working on experimental and theoretical aspects of nanoscience.
The work presented in Thomas M. Gogsig's thesis deals with the
discovery of new metal-catalyzed transformations ranging from
Kumada-, Heck- and Suzuki-type reactions. The thesis starts with a
formidable introduction to Pd-catalyzed cross-coupling reactions.
New results have been obtained on:
This thesis reports the discovery of metal nanoparticles having new structures that do not exist in bulk state and that exhibit hydrogen storage ability or CO oxidation activity. Research into the reaction of hydrogen with metals has attracted much attention because of potential applications as effective hydrogen storage materials, as permeable films, or as catalysts for hydrogenation. Also, CO oxidation catalysts have been extensively developed because of their importance to CO removal from car exhaust or fuel-cell systems. At the same time, atomic-level (solid solution) alloying has the advantage of being able to continuously control chemical and physical properties of elements by changing compositions and/or combinations of constituent elements. This thesis provides a novel strategy for the basis of inter-elemental fusion to create highly efficient functional materials for energy and material conversions.
"Advances in Catalysis" fills the gap between the journal papers
and the textbooks across the diverse areas of catalysis research.
For more than 60 years Advances in Catalysis has been dedicated to
recording progress in the field of catalysis and providing the
scientific community with comprehensive and authoritative reviews.
This series in invaluable to chemical engineers, physical chemists,
biochemists, researchers and industrial chemists working in the
fields of catalysis and materials chemistry. * In-depth, critical, state-of-the-art reviews * Comprehensive, covers of all aspects of catalysis research
Find out how theoretical calculations are used to determine, elucidate and propose mechanisms for Pd-catalyzed C-C cross-coupling reactions in Max Garcia Melchor's outstanding thesis. Garcia Melchor investigates one of the most significant and useful types of reactions in modern organic synthesis; the Pd-cross coupling reaction. Due to its versatility, broad scope and selectivity under mild conditions, this type of reaction can now be applied in fields as diverse as the agrochemical and pharmaceutical industry. Garcia Melchor studies the reaction intermediates and transition states involved in the Negishi, the copper-free Sonogashira and the asymmetric version of Suzuki-Miyaura coupling. He also characterizes and provides a detailed picture of the associated reaction mechanisms. The author has won numerous prizes for this work which has led to over eight publications in internationally renowned journals.
This thesis describes a series of investigations designed to assess the value of metalloenzymes in systems for artificial and adapted photosynthesis. The research presented explores the interplay between inherent enzyme properties such as structure, rates and thermodynamics, and the properties of the semiconducting materials to which the enzyme is attached. Author, Andreas Bachmeier provides a comprehensive introduction to the interdisciplinary field of artificial photosynthesis, allowing the reader to grasp the latest approaches being investigated, from molecular systems to heterogeneous surface catalysis. Bachmeier's work also uses metalloenzymes to highlight the importance of reversible catalysts in removing the burden of poor electrocatalytic rates and efficiencies which are common characteristics for most artificial photosynthesis systems. Overall, this thesis provides newcomers and students in the field with evidence that metalloenzymes can be used to establish new directions in artificial photosynthesis research.
This book presents a range of nanocatalysts, together with their primary environmental applications and use in chemical production processes. In addition, it describes the nanomaterials used for catalysts and details their performance. The book introduces readers to the fundamentals and applications of nanocatalysis, synthesis, characterization, modification and application. Further topics include: landfill organic pollutant photodegradation; magnetic photocatalysis; synergistic effects on hydrogenated TiO2; and photoinduced fusion of gold-semiconductor nanoparticles. A detailed explanation of the chemistry of nanostructures and the ability to control materials at the nano-scale rounds out the coverage. Given the central importance of research in nanotechnology and nanoscience for the development of new catalysts, the book offers a valuable source of information for researchers and academics alike. It will also benefit industrial engineers and production managers who wish to understand the environmental impact of nanocatalysts.
In his thesis, Xiaoyu Sun conducts the first total synthesis of all possible stereoisomers of plakortide E and also confirms the absolute configuration of natural plakortide E. Xiaoyu Sun subsequently converts Plakortide E methyl ester to plakortone B in a biomimetic conversion. Construction and functionalization of cyclic peroxides are notoriously difficult due to the very low O-O bond dissociation energy. Plaktoride E is isolated from the Jamaican marine sponge platorits halichondrioides and contains a five-membered peroxide ring, with oxygen atoms linked to tertiary C4 and C6 centers. The methodology used for synthesizing highly substituted cyclic peroxides is novel and useful, and not only extends the field of Pd-catalyzed reactions, but also provides a convenient synthetic approach for the preparation of the 1,2-dioxolanes series. Plakortide E and plakortone B are bioactive, which means that the synthetic studies on them and their analogs are pivotal in drug discovery.
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. In each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
Volume II presents the latest advances in catalytic hydrodeoxygenation and other transformations of some cellulosic platform chemicals to high value-added products. It presents the theoretical evaluation of the energetics and catalytic species involved in potential pathways of catalyzed carbohydrate conversion, pathways leading to the formation of humin-based by-products, and thermal pathways in deriving chemicals from lignin pyrolysis and hydrodeoxygenation. Catalytic gasification of biomass under extreme thermal conditions as an extension of pyrolysis is also discussed. Marcel Schlaf, PhD, is a Professor at the Department of Chemistry, University of Guelph, Canada. Z. Conrad Zhang, PhD, is a Professor at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
This book presents nine chapters based on fundamental and applied research of alternative energies. At the present time, the challenge is that technology has to come up with solutions that can provide environmentally friendly energy supply options that are able to cover the current world energy demand. Experts around the world are working on these issues for providing new solutions that will break the existing technological barriers. This book aims to address key pillars in the alternative energy field, such as: biomass energy, hydrogen energy, solar energy, wind energy, hydroelectric power, geothermal energy and their environmental implications, with the most updated progress for each pillar. It also includes the life cycle assessment (LCA) and thermoeconomic analysis (TA) as tools for evaluating and optimising environmental and cost subjects. Chapters are organized into fundamental research, applied research and future trends; and written for engineers, academic researches and scientists.
Advances in Catalysis fills the gap between the journal papers
and the textbooks across the diverse areas of catalysis research.
For more than 60 years Advances in Catalysis has been dedicated to
recording progress in the field of catalysis and providing the
scientific community with comprehensive and authoritative reviews.
This series in invaluable to chemical engineers, physical chemists,
biochemists, researchers and industrial chemists working in the
fields of catalysis and materials chemistry. *In-depth, critical, state-of-the-art reviews * Comprehensive, coversof all aspects of catalysis research "
The increase of greenhouse gases in the atmosphere and the decrease of the available amount of fossil fuels necessitate finding new alternative and sustainable energy sources in the near future. This book summarizes the role and the possibilities of catalysis in the production of new energy carriers and in the utilization of different energy sources. The main goal of this work is to go beyond those results discussed in recent literature by identifying new developments that may lead to breakthroughs in the production of alternative energy. The book discusses the use of biomass or biomass derived materials as energy sources, hydrogen formation in methanol and ethanol reforming, biodiesel production, and the utilization of biogases. Separate sections also deal with fuel cells, photocatalysis, and solar cells, which are all promising processes for energy production that depend heavily on catalysts.
This book explores the formation of colloidal gold-copper (AuCu) alloy nanoparticles and evaluate their application in heterogeneous catalysis. Metal alloys are extremely versatile materials that have been used since the Antiquity to improve the properties of commonly used metals, therefore the understanding of their properties has fostered the applications in areas such as photonics, sensors, clinical diagnostics, and especially in heterogeneous catalysis, which allows catalyst active sites to be modulated. In this book, readers will appreciate the fundamental aspects involved in the synthesis of AuCu nanoalloys, including real-time information about their atomic organization, electronic properties, as well a deeper understand about the behavior of AuCu supported nanoalloys under real catalytic conditions, providing interesting insights about the effect of the support on the nanoalloy stability. The results presented here open new horizons for using metal alloys in catalysis and also other areas where the metal-support interface may play a crucial role.
Lucas Montero de Espinosa and Michael A. R. Meier: Olefin Metathesis of Renewable Platform Chemicals.- Pieter C. A. Bruijnincx, Robin Jastrzebski, Peter J. C. Hausoul, Robertus J. M. Klein Gebbink, and Bert M. Weckhuysen: Pd-Catalysed Telomerisation of 1,3-Dienes with Multifunctional Renewable Substrates - Versatile Routes for the Valorisation of Biomass-Derived Platform Molecules.- A Behr, A. J. Vorholt: Hydroformylation and related reactions of renewable resources.- Ties J. Korstanje, Robertus J.M. Klein Gebbink: Catalytic oxidation and deoxygenation of renewables with rhenium complexes.- Antoine Buchard, Clare M. Bakewell, Jonathan Weiner and Charlotte K. Williams: Recent Developments In Catalytic Activation Of Renewable Resources For Polymer Synthesis.
Consolidating a collection of papers that Professor Eli Ruckenstein and his co-workers have published over the past four decades, Heterogeneous Catalysis Contributions to Experimental and Theoretical Studies addresses catalysts involved in reactions such as methane CO2 reforming, methane partial oxidation, and catalytic combustion. Each chapter opens with an introduction summarizing the papers included in the chapter and highlights the relevance of the chemistry to todays R&D. This valuable resource for catalytic and material scientists and graduate students paves the way to help develop new chemicals and materials.
Electrocatalysts are the heart of power devices where electricity is produced via conversion of chemical into electrical energy. - pressive advances in surface science techniques and in first pr- ciples computational design are providing new avenues for signi- cant improvement of the overall efficiencies of such power dev- es, especially because of an increase in the understanding of el- trocatalytic materials and processes. For example, the devel- ment of high resolution instrumentation including various electron and ion-scattering and in-situ synchrotron spectroscopies, elect- chemical scanning tunneling microscopy, and a plethora of new developments in analytical chemistry and electrochemical te- niques, permits the detailed characterization of atomic distribution, before, during, and after a reaction takes place, giving unpre- dented information about the status of the catalyst during the re- tion, and most importantly the time evolution of the exposed ca- lytic surfaces at the atomistic level. These techniques are c- plemented by the use of ab initio methods which do not require input from experimental information, and are based on numerical solutions of the time-independent Schrodinger equation including electron-electron and electron-atom interactions. These fir- principles computational methods have reached a degree of - turity such that their use to provide guidelines for interpretation of experiments and for materials design has become a routine practice in academic and industrial communities.
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. n each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
This book provides the reader with the latest directions in the field of homogeneous catalysts for fine chemical production. Each theme is introduced from a broad perspective: materials, strategies, techniques and processes are presented both from a theoretical and a practical point of view. The focus is on those catalysts - particularly heterogenized homogeneous catalysts - and applications leading to the production of fine and speciality chemicals in a highly selective manner and with minimal environmental and economic impact. Each topic is treated critically so topics such as factors affecting the catalysts performance, the influence of the support, the catalysts' deactivation, the metal leaching or the issues on recycling are analyzed. Industrial and academic points of view are integrated and the feasibility and timeliness of industrial applications are illustrated. The reader is also provided with a comparison between parent heterogeneous and homogeneous systems. Content Level Research
Catalysis is the acceleration of a chemical reaction by a catalyst,
a substance that notably affects the rate of a chemical reaction
without itself being consumed or altered. Since 1948, "Advances in
Catalysis" has filled the gap between the papers that report on and
the textbooks that teach in the diverse areas of catalysis
research. The editors of and contributors to "Advances in
Catalysis" are dedicated to recording progress in this area.
This thesis gives a thorough account of the development of iron-catalysed hydrosilylation, hydroboration and hydromagnesiation reactions. With extraordinary referencing and scientific argument, Mark Greenhalgh describes the development of methodologies which require only commercially available materials and non-specialised techniques. The intention of this approach is to ensure the science can be adopted widely by the chemical community. In addition to an insight into the processes involved in methodology development, Greenhalgh discusses and determines the relevant reaction mechanisms. This thesis provides not only the most thorough review of the area, but offers a level of insight well beyond that expected from a Ph.D. student. The work in this thesis has been published at the highest level, and the results and ideas have led to 3 industry-funded Ph.D. studentships and grant income in excess of GBP1 million.
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. In each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
Catalysis is the acceleration of a chemical reaction by a catalyst,
a substance that notably affects the rate of a chemical reaction
without itself being consumed or altered. Since 1948, "Advances in
Catalysis" has filled the gap between the papers that report on and
the textbooks that teach in the diverse areas of catalysis
research. The editors of and contributors to "Advances in
Catalysis" are dedicated to recording progress in this area.
Bruce Yoder's thesis outlines his investigation of the dissociative chemisorption of methane (CH4) on a nickel single crystal. In this work Bruce uses a molecular beam and infrared laser techniques to prepare methane in excited rovibrational states. The excited methane molecules are aligned relative to the target nickel surface. Bruce describes the discovery and exploration of a previously unknown steric effect in the dissociation reaction between a vibrationally excited methane molecule and a nickel crystal. From these studies we see that methane molecules are up to twice as reactive when the vibration is aligned parallel rather than perpendicular to the surface. This discovery will help guide the development of detailed predictive models of methane chemisorption, which in turn may lead to better catalysts for the synthesis of several industrially relevant chemicals, including hydrogen fuel from natural gas. |
You may like...
Reconfigurable Computing, Volume 1 - The…
Scott Hauck, Andre Dehon
Hardcover
R2,049
Discovery Miles 20 490
Advances in Delay-Tolerant Networks…
Joel J. P. C. Rodrigues
Paperback
R4,669
Discovery Miles 46 690
Creativity in Computing and DataFlow…
Suyel Namasudra, Veljko Milutinovic
Hardcover
R4,204
Discovery Miles 42 040
Cryogenic Heat Transfer
Randall F. Barron, Gregory F. Nellis
Hardcover
R6,396
Discovery Miles 63 960
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
|