![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. In addition, a thorough and updated coverage of the traditional aspects of heterogeneous catalysis such as preparation, characterization and use in well-established technologies such as nitration, ammoxidation and hydrofluorination is included. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding.
Fuel Production with Heterogeneous Catalysis presents the groundbreaking discoveries, recent developments, and future perspectives of one of the most important areas of renewable energy research-the heterogeneous catalytic production of fuels. Comprised of chapters authored by leading experts in the field, this authoritative text: Focuses primarily on the state-of-the-art catalysts and catalytic processes anticipated to play a pivotal role in the production of fuels Describes production of fuels from renewable sources using environmentally friendly technologies Exposes the advantages and disadvantages of each production process Suggests solutions to minimize the impact of fuel transportation Conveys the importance of catalysis for the sustainable production of fuels Fuel Production with Heterogeneous Catalysis delivers a comprehensive overview of the current state of the art of the heterogeneous catalytic production of fuels, providing reaction mechanism schemes, engineering solutions, valuable industry insights, and more.
The aim of this book is to cover the very recent developments in asymmetric organocatalysis, focussing on those published since the beginning of 2008. The last decade has witnessed an explosive growth in the field of asymmetric organocatalysis with an impressive amount of new catalysts, novel methodologies, and applications in numerous reaction types, such as nucleophilic substitutions, addition reactions, as well as cycloadditions, oxidations, reductions, kinetic resolutions, and miscellaneous reactions. This very diverse and intensely developing field is too wide to cover in a single review. The timeliness of the book together with the expected impact is excellent, since nowadays asymmetric organocatalysis is arguably the most intensively developed field in organic chemistry. The book is designed to meet the demands of a postgraduate textbook,containing case studies and Q&A sections, as well as a practical book filled with facts and data useful as a working tool for the practitioner. The book is divided into ten sections, dealing successively with nucleophilic additions to electron-deficient C=C double bonds, nucleophilic additions to C=O double bonds, nucleophilic additions to C=N double bonds, nucleophilic additions to unsaturated nitrogen, nucleophilic substitutions at aliphatic carbon, cycloaddition reactions, oxidations, reductions, kinetic resolutions and desymmetrisations, and miscellaneous reactions.
Proceedings of the NATO Advanced Study Institute on New Trends and Applications of Photoelectrochemistry and Photocatalysis for Environment Problems, Cafelu, Palermo, Italy, September 6-18, 1987"
This book provides a comprehensive description of the catalytic technologies for selective hydrogenation of benzene to cyclohexene. Focusing on selective hydrogenation of benzene to prepare cyclohexene and its downstream products, such as cyclohexanone, bulk chemicals and high-value fine chemicals, it also discusses the objective laws, reaction mechanisms and scientific significance based on experimental data, analysis and characterization results. Given its scope, the book will appeal to a broad readership, particularly professionals at universities and scientific research institutes, senior undergraduates, master's and doctoral graduate students as well as practitioners in industry.
An outstanding international scientific event in the field of metathesis chemistry, the NATO ASI "Green Metathesis Chemistry: Great Challenges in Synthesis, Catalysis and Nanotechnology" has been recently organized in Bucharest, Romania (July 21- August 2, 2008). Numerous renowned scientists, young researchers and students, convened for two weeks to present and debate on the newest trends in alkene metathesis and identify future perspectives in this fascinating area of organic, organometallic, catalysis and polymer chemistry with foreseen important applications in materials science and technology. Following the fruitful practice of NATO Advanced Study Institutes, selected contributions covering plenary lectures, short communications and posters have been compiled in this special volume dedicated to this successful convention on green metathesis chemistry. General interest was primarily focused on relevant "green chemistry" features related to all types of metathesis reactions (RCM, CM, enyne metathesis, ADMET and ROMP). Diverse opportunities for green and sustainable technologies and industrial procedures based on metahesis have been identified. Largely exemplified was the utility of this broadly applicable strategy in organic synthesis, for accessing natural products and pharmaceuticals, and also its ability to fit in the manufacture of smart and nanostructured materials, self-assemblies with nanoscale morphologies, macromolecular engineering.
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Catalysis underpins most modern industrial organic processes. It has become an essential tool in creating a 'greener' chemical industry by replacing more traditional stoichiometric reactions, which have high energy consumption and high waste production, with mild processes which increasingly resemble Nature's enzymes. Metal-Catalysis in Industrial Organic Processes considers the major areas of the field and discusses the logic of using catalysis in industrial processes. This popular book, now available as softback, provides information on oxidation, hydrogenation, carbonylation, C-C bond formation, metathesis and polymerization processes, as well as on the mechanisms involved. In addition two appendices offer a concise treatment of homogeneous and heterogenous catalysis. Numerous exercises referring to problems of catalytic processes, and research perspectives complete the book. This definitive reference source, written by practising experts in the field, provides detailed and up-to-date information on key aspects of metal catalysis.
Over the last fifteen years, N-heterocyclic carbenes (NHCs) have mostly been used as ancillary ligands for the preparation of transition metal-based catalysts. Compared to phosphorus-containing ligands, NHCs tend to bind more strongly to metal centres, avoiding the necessity for the use of excess ligand in catalytic reactions. The corresponding complexes are often less sensitive to air and moisture, and have proven remarkably resistant to oxidation. Recent developments in catalysis applications have been facilitated by the availability of carbenes stable enough to be bottled, particularly for their use as organocatalysts. This book shows how N-heterocyclic carbenes can be useful in various fields of chemistry and not merely laboratory curiosities or simple phosphine mimics. NHCs are best known for their contribution to ruthenium and palladium-catalysed reactions but the scope of this book is much broader. The synthesis of NHC ligands and their corresponding metal complexes are covered in depth. Moreover, the biological activity of NHC-containing complexes, as well as an overview of their theoretical aspects are included. Such metal species are further examined, not only in terms of their catalytic applications, but also of their stereoelectronic parameters and reactivity/stability. Finally, special attention is given to the hot topic of organocatalysis. The book will be of interest to postgraduates, academic researchers and those working in industry.
The book provides a comprehensive treatment of combinatorial development of heterogeneous catalysts. In particular, two computer-aided approaches that have played a key role in combinatorial catalysis and high-throughput experimentation during the last decade - evolutionary optimization and artificial neural networks - are described. The book is unique in that it describes evolutionary optimization in a broader context of methods of searching for optimal catalytic materials, including statistical design of experiments, as well as presents neural networks in a broader context of data analysis. It is the first book that demystifies the attractiveness of artificial neural networks, explaining its rational fundamental - their universal approximation capability. At the same time, it shows the limitations of that capability and describes two methods for how it can be improved. The book is also the first that presents two other important topics pertaining to evolutionary optimization and artificial neural networks: automatic generating of problem-tailored genetic algorithms, and tuning evolutionary algorithms with neural networks. Both are not only theoretically explained, but also well illustrated through detailed case studies.
As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes. In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland's Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev's predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery of scandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev's periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements. Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin's theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom. This second volume provides chemists with an overview of the important role played by the Periodic Table in advancing our knowledge of solid state and bioinorganic chemistry. It also illustrates how it has been used to fine-tune the properties of compounds which have found commercial applications in catalysis, electronics, ceramics and in medicinal chemistry.
Recent Progress in Mesostructured Materials is a selection of oral
and poster communications presented during the 5th International
Mesostructured Materials Symposium (5th IMMS2006). Authorized by
International Mesostructured Material Association (IMMA) and hosted
by the Fudan University, China. The scope of this involved field
covers both traditional inorganic mesostructured molecular sieves
and mesostructured materials like organic polymers, metals,
organic-inorganic nanocomposites, and ordered mesoporous carbons,
the hot topics in chemistry, crystallization, structure, liquid
crystalline, catalysis and materials science. This symposium
provided a forum for the presentation of the most novel development
and knowledge in the science and technology of mesostructured
materials. Papers presented cover a wide range of topics that
include synthesis, structure determination, characterisation,
modelling, and application in catalysis, adsorption, biochemistry
and advanced material sciences.
Using new instrumentation and experimental techniques that allow scientists to observe chemical reactions and molecular properties at the nanoscale, the authors of Surface and Nanomolecular Catalysis reveal new insights into the surface chemistry of catalysts and the reaction mechanisms that actually occur at a molecular level during catalysis. While each chapter contains the necessary background and explanations to stand alone, the diverse collection of chapters shows how developments from various fields each contributed to our current understanding of nanomolecular catalysis as a whole. The book describes how the size and shape of materials at the nanoscale can change their chemical and physical properties and promote more efficient reactions with fewer by-products. First it highlights the preparation, characterization, and applications of heterogeneous and supported metal catalysts. Then it covers the engineering of catalytic processes, structure and reaction control, and texturological properties of catalytic systems. The authors explain how surface science can elucidate reaction mechanisms and discuss the growing role of high-throughput experimentation and combinatorial approaches in catalysis. From fundamental concepts to future directions, Surface and Nanomolecular Catalysis offers a well-rounded compilation of noteworthy developments which will continue to expand and transform our understanding of catalysis, particularly in the context of clean energy and environmental applications such as fuel cells.
The study of environmental interfaces and environmental catalysis is central to finding more effective solutions to air pollution and in understanding of how pollution impacts the natural environment. Encompassing concepts, techniques, and methods, Environmental Catalysis provides a mix of theory, computation, analysis, and synthesis to support the latest applications in biocatalysis, green chemistry, environmental remediation and our understanding of the interaction of pollutants with natural systems. The book focuses on several aspects of environmental catalysis. Surface catalysis of airborne particles - including ice, trace atmospheric gases, aerosolized soot nanoparticles, and mineral dust surfaces - as well as particles in contact with ground water and their role in surface adsorption, surface catalysis, hydrolysis, dissolution, precipitation, oxidation and ozone decomposition is explored. It continues by presenting catalysis as the key technology for treating emissions and reducing waste by-products. The authors review the theory behind catalytic converters and discuss the effectiveness of several catalysts, including zeolites and nanoparticles, in treating emissions, aromatic hydrocarbons, and chemical warfare agents. They also survey the use of biocatalysis in environmental remediation, and industrial processes, particularly in the production of transportation fuels, fine chemicals, and pharmaceuticals. Then the authors explain how enzymes can remove chlorinated organics and metals and how microbes can metabolize toxic chemicals from groundwater. Lastly, they discuss the principles of green chemistry, including the use of environmentally benign solvents, biphasic catalysts, and other alternative solvents to recover and recycle catalysts based on heavy metals. With increasing ground water pollution, increasing particulates in the atmosphere, and the increasing need to remove pollutants from industrial and automotive sources, Environmental Catal
Chemistry and chemical technology have been at the heart of the
revolutionary developments of the 20th century. The chemical
industry has a long history of combining theory (science) and
practice (engineering) to create new and useful products.
Worldwide, the process industry (which includes chemicals,
petrochemicals, petroleum refining, and pharmaceuticals) is a huge,
complex, and interconnected global business with an annual
production value exceeding 4 trillion dollars. Although in industry
special focus is in heterogeneous catalysis, homogeneous,
enzymatic, photochemical and electrochemical catalysis should not
be overlooked; as the major aim is to produce certain chemicals in
the best possible way, applying those types of catalysis, which
suit a particular process in the most optimal way. Catalysis
according to the very definition of it deals with enhancement of
reaction rates, that is, with catalytic kinetics. This book unifies
the main sub disciplines forming the cornerstone of catalytic
kinetics.
To meet changing market demands that have stringent emission standards and to ensure proper performance in refinery units, evaluation of novel catalyst designs and results from material characterization and testing of catalysts are of crucial importance for refiners as well as for catalyst manufacturers. This book highlights recent developments in the application of refinery catalysts in selected units such as fluid catalytic cracking (FCC), hydrogen production for hydroprocessing units, hydrotreating, hydrocracking, and sustainable processing of biomass into biofuels.
The field of asymmetric catalysis is currently one of the hottest areas in chemistry. This unique book focuses on the mechanism of enantioselectivity in asymmetric catalysis, rather than asymmetric catalysis from the synthetic view. It describes reliable, experimentally and computationally supported mechanisms, and discusses the danger of so-called "plausible" or "accepted" mechanisms leading to wrong conclusions. It draws parallels to enzymatic catalysis in biochemistry, and examines in detail the physico-chemical aspects of enantioselective catalysis.
This book focuses on direct nitrogenation strategies to incorporate one or more N-atoms into simple substrates especially hydrocarbons via C-H and/or C-C bond cleavage, which is a green and sustainable way to synthesize nitrogen-containing compounds. The book consists of seven chapters demonstrating interesting advances in the preparation of amines, amides, nitriles, carbamides, azides, and N-heterocyclic compounds and illustrating the mechanisms of these novel transformations. It offers an accessible introduction to nitrogenation reactions for chemists involved in N-compound synthesis and those interested in discovering new reagents and reactions. Ning Jiao is a Professor of Chemistry at Peking University, China.
In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers the fundamental and applied aspects of solid catalyst deactivation in a comprehensive way and encompasses the state of the art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration by collecting contributions from experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, a selection of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal.
There have been enormous recent advances in our ability to produce and trap samples of translationally cold molecules (below 1 K) and ultracold molecules (below 1 mK). Molecules such as NH3, OH and NH have been cooled from room temperature to the milliKelvin regime by a variety of methods including buffer-gas cooling and Stark deceleration. Bose-Einstein condensates have been produced for dimers of both bosonic and fermionic alkali metal atoms, and the first signatures of ultracold triatomic and tetraatomic molecules have been observed. This book will include both cooling of molecules from high temperatures and formation of molecules in ultracold atomic gases; molecules in cold ionic gases and in helium droplets will also be covered. .
It has become a tradition that every four years, the Universite Catholique de Louvain and the Katholieke Universiteit Leuven jointly organize a symposium devoted to the scientific bases for the preparation of heterogeneous catalysts. These meetings bring together researchers from academia and industry and offer a forum for discussions on the chemistry involved in the preparation of industrial heterogeneous catalysts.
This volume compiles 63 peer-reviewed scientific papers documenting the latest developments in the application of homogeneous, heterogeneous, and immobilized homogenous catalysts used in organic synthesis. Catalysis of Organic Reactions consists of primary research articles accompanied by experimental sections that emphasize chemical processes with actual and potential applications in industry. Each chapter represents current and outstanding research by recognized leaders in the field. Organized into five major symposia, topics include selective homogeneous and heterogeneous catalysis for the synthesis of fine chemical and pharmaceuticals, solid acid catalysis, selective oxidation, amination, chiral catalysis, combinatorial technologies, nanoparticles, environmentally friendly catalysis, and more. The collection also presents the award-winning research of Jean Lessard, concerning the scope and limitations of electrocatalytic hydrogenation of organic compounds at Raney Metal Electrodes, and Richard Larock, relating to palladium-catalyzed annulation and migration reactions. These proceedings are of interest to the chemical scientists and engineers whose special interest is to apply homogenous and heterogeneous catalysts in organic synthesis of pharmaceutical, fine, and commodity chemicals. |
You may like...
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
St Barnabas Pimlico - Ritual and Riots
Malcolm Johnson, Alan Taylor
Hardcover
R1,088
Discovery Miles 10 880
|