![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
This volume is a description of the current knowledge on the different metal-oxo and metal-peroxo species involved in catalytic oxidations. The series contains critical reviews of the present position and future trends, and short and concise reports written by the world's renowned experts.
The original properties of mesoporous molecular sieves are so unique that the design of most existing catalysts could be reconsidered. It might indeed be of interest to introduce MMS either as a support or as the active phase, merely on the basis of their high surface areas, narrow pore size distribution and flexibility in composition. The recent literature provides examples of MMS based catalysts of many types such as acid-base solids, supported metals and supported oxides, mixed oxides, anchored complexes and clusters, grafted organic functional groups and others. Examples of all these developments are documented in the present proceedings including some spectacular new proposals. The new metallic (Pt) mesophases are specially worth mentioning because they represent a new approach to producing non-supported highly dispersed metals. In these proceedings the reader will find feature articles and
regular papers from many worldwide groups, covering all aspects of
synthesis, physical characterization and catalytic reactivity of
MMS and their chemically modified forms. It is actually remarkable
that this recent development brought together an even broader
spectrum of scientists from traditionally unrelated fields such as
those of liquid crystals, surfactants, sol-gels, amorphous oxides
and mixed oxides, solid state, adsorbents and heterogeneous
catalysts. Obviously, this is a fast-growing research area which
triggers the imagination and creativity at the cross-road between
material design, molecular surface tailoring and catalytic
applications.
In this thesis, applications of aminoacylation ribozymes named flexizymes are described. Flexizymes have the following unique characteristics: (i) substrate RNA is recognized by two consecutive base pairs between the 3'-end of substrate RNA and the 3'-end of the flexizyme; (ii) these base pairs can be substituted with other base pairs; and (iii) various activated amino acids can be used as substrates including both canonical and noncanonical amino acids. This flexible aminoacylation of RNAs by flexizymes was used to label endogenous tRNAs to be removed, and in vitro selection using the tRNA-depleted library enabled the discovery of the novel interaction between the microRNA precursor and metabolites. Flexizymes are also used to prepare various aminoacyl-tRNAs bearing mutations at the 3'-end to engineer the translation machinery and to develop the orthogonal translation machinery. The first part of the research demonstrated that SELEX is appropriate for discovering the interaction between small RNA and ligands, and suggested that more RNA motif binding to small molecules exists in small RNAs. The second part opened a door to new opportunities for in vitro synthetic biology involving the engineering of the genetic codes and translation machineries. This research also indicated the great potential of aminoacylation by flexizymes to be applied in various fields of RNA research, which is beneficial for RNA researchers.
The book explains the principles and fundamentals of photocatalysis and highlights the current developments and future potential of the green-chemistry-oriented applications of various inorganic, organic, and hybrid photocatalysts. The book consists of eleven chapters, including the principles and fundamentals of heterogeneous photocatalysis; the mechanisms and dynamics of surface photocatalysis; research on TiO2-based composites with unique nanostructures; the latest developments and advances in exploiting photocatalyst alternatives to TiO2; and photocatalytic materials for applications other than the traditional degradation of pollutants, such as carbon dioxide reduction, water oxidation, a complete spectrum of selective organic transformations and water splitting by photocatalytic reduction. In addition, heterogeneized polyoxometalate materials for photocatalytic purposes and the proper design of photocatalytic reactors and modeling of light are also discussed. This book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for undergraduate and graduate students focusing on heterogeneous photocatalysis, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Juan Carlos Colmenares is a Professor at the Institute of Physical Chemistry, Polish Academy of Sciences, Poland. Yi-Jun Xu is a Professor at the State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, China.
Stereoselective Synthesis of Tetrasubstituted Alkenes via Torquoselectivity-Controlled Olefination of Carbonyl Compounds with Ynolates, by Mitsuru Shindo and Kenji Matsumoto.- Stereoselective Synthesis of Z-Alkenes, by Woon-Yew Siau, Yao Zhang and Yu Zhao.- Stereoselective Synthesis of Mono-fluoroalkenes, by Shoji Hara.- Recent Advances in Stereoselective Synthesis of 1,3-Dienes, by Michael De Paolis, Isabelle Chataigner and Jacques Maddaluno.- Selective Olefination of Carbonyl Compounds via Metal-Catalyzed Carbene Transfer from Diazo Reagents, by Yang Hu and X. Peter Zhang.- Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product, by Xiaoguang Lei and Houhua Li.- Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles, by Yonghong Gu and Shi-Kai Tian.- Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones, by Yan Zhang and Jianbo Wang.
This thesis discusses the use of asymmetric organic catalysis for the direct enantioselective synthesis of complex chiral molecules, and by addressing the many aspects of both vinylogy and atropisomerism, it appeals to researchers and scholars interested in both areas. Organocatalysis is a relatively modern and "hot" topic in the chemical community; it is constantly expanding and its use has been extended to interesting areas like vinylogous reactivity and atropisomerism. Vinylogous systems are very important for their synthetic applications but also pose a number of challenges, the most notable of which are their reduced reactivity and the reduced stereocontrol at these positions. On the other hand, atropisomeric systems are even more important because of the huge potential they have as drugs, ligands and catalysts. Chemists have only recently "recognized" the importance of these two areas and are focusing their efforts on studying them and the challenges they pose. This thesis offers an extensive introduction on the general aspects of chirality and organocatalysis and an equally extensive experimental section that allow nonexperts to understand the discussion section and reproduce the experiments.
This book is devoted to various aspects of self-assembly of gold nanoparticles at liquid-liquid interfaces and investigation of their properties. It covers primarily two large fields: (i) self-assembly of nanoparticles and optical properties of these assemblies; and (ii) the role of nanoparticles in redox electrocatalysis at liquid-liquid interfaces. The first part aroused from a long-lasting idea to manipulate adsorption of nanoparticles at liquid-liquid with an external electric field to form 'smart' mirrors and/or filters. Therefore, Chapters 3 to 5 are dedicated to explore fundamental aspects of charged nanoparticles self-assembly and to investigate optical properties (extinction and reflectance) in a through manner. Novel tetrathiafulvalene (TTF)-assisted method leads to self-assembly of nanoparticles into cm-scale nanofilms or, so-called, metal liquid-like droplets (MeLLDs) with remarkable optical properties. The second part (Chapters 6 to 8) clarifies the role of nanoparticles in interfacial electron transfer reactions. They demonstrate how nanoparticles are charged and discharged upon equilibration of Fermi levels with redox couples in solution and how it can be used to perform HER and ORR. Finally, Chapter 9 gives a perspective outlook, including applications of suggested methods in fast, one-step preparation of colloidosomes, SERS substrates as well as pioneer studies on so-called Marangony-type shutters drive by the electric field.
The first supplement to the three volume reference work "Comprehensive Asymmetric Catalysis" critically reviews new developments to the hottest topics in the field written by recognised experts. Eleven chapters which are already in the major reference work have been supplemented and additionally five new chapters have been included. Thus the state-of-the art in this area is now re-established. Together with the basic three volume book set this supplement is not only the principal reference source for synthetic organic chemists, but also for all scientific researchers who use chiral compounds in their work (for example, in biochemical investigations and molecular medicine) as well as for pharmaceutical chemists and other industrial researchers who prepare chiral compounds.
This volume covers both basic and advanced aspects of organometallic chemistry of all metals and catalysis. In order to present a comprehensive view of the subject, it provides broad coverage of organometallic chemistry itself. The catalysis section includes the challenging activation and fictionalization of the main classes of hydrocarbons and the industrially crucial heterogeneous catalysis. Summaries and exercises are provides at the end of each chapter, and the answers to these exercises can be found at the back of the book. Beginners in inorganic, organic and organometallic chemistry, as well as advanced scholars and chemists from academia and industry will find much value in this title.
Oxygenases have been the subject of much study and are of great interest and application. Biomimetic chemistry of oxygenases has yielded clarification of enzyme structures and reaction mechanisms and has also led to the development of synthetic oxygenation processes. This volume contains 8 chapters written by leading researchers which together present an overview of di- and mono-oxygenases and their model systems from the point of view of functions, structures and mechanisms. An up-to-date clarification of structures around active centres of heme- and nonheme-oxygenases is given with reference to the design of model complexes. Various contributions also discuss in detail the formation, structure and reactivity of metal-oxygen and metal-substrate species in both enzyme and model systems. The contents of the volume address the interface between bioinorganic chemistry and homogeneous catalysis and contains much to emphasize the importance of catalytic studies in bio- and biomimetic chemistry. Audience: Research chemists interested in the use of oxygenases in catalysis.
Almost all contemporary organic synthesis involve transition metal
complexes as catalysts or particular reagents. The aim of this book
is to provide the reader with detailed accounts of elementary
processes within molecular catalysis to allow its development and
as an aid in designing novel catalytic systems. The book comprises
authoritative reviews on elementary processes from experts working
at the forefront of organometallic chemistry.
Computational Modelling of Homogeneous Catalysis is an extensive collection of recent results on a wide array of catalytic processes. The chapters are, in most cases, authored by the researchers who have performed the calculations. The book illustrates the importance of computational modelling in homogeneous catalysis by providing up-to-date reviews of its application to a variety of reactions of industrial interest, including: -olefin polymerization; This book facilitates understanding by experimental chemists in the field on what has already been accomplished and what can be expected from calculations in the near future. In addition, the book provides computational chemists with a first-hand knowledge on the state of the art in this exciting field.
This will be a must-have work for scientists and practitioners in any field related to modern chemical research. It will also be highly useful for many workers in industry who are required to keep up-to-date with the latest news in chemistry and applied chemistry. So much is covered here in critical review, from the present position of developing research to future trends, that this book will still be an indispensable text ten years from now.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal
217 2. COPOLYMERIZATION OF PROPENE OR HIGHER I-ALKENES WITH 218 CARBON MONOXIDE 2. 1. Ligands and polymerization conditions 218 2. 2. Spiroketal formation 221 2. 3. Enantioselectivity 222 2. 4. Higher I-Alkenes 226 3. COPOLYMERIZATION OF STYRENE OR ITS DERIVATIVES WITH 226 CARBON MONOXIDE 4. COPOLYMERIZATION OF OTHER OLEANS WITH CARBON MONOXIDE 230 5. ASYMMETRIC TERPOLYMERIZATION OF MORE THAN Two KINDS OF 232 OLEFINS WITH CARBON MONOXIDE 6. POLYKETONE CONFORMATION 233 7. CONCLUSION 234 Chapter 8. Chain Propagation Mechanisms 237 Ayusman Sen 1. INTRODUCTION 237 2. PALLADIUM (II) BASED SYSTEMS 238 3. NICKEL (II) BASED SYSTEMS 256 4. RHODIUM (I) BASED SYSTEMS 257 5. CONCLUSION 261 Chapter 9. Theoretical Studies on Copolymerization of Polar Monomers 265 Peter Margl, Artur Michalak, and Tom Ziegler 1. INTRODUCTION 265 2. COPOLYMERIZATION OF CARBON MONOXIDE WITH ETHYLENE 267 2. 1. Experimental and calculated rates for the insertion processes for 267 copolymerization catalysed by Pd(II) systems. 2. 2. A more detailed look at the productive and unproductive cycles 270 in copolymerization catalysed by Pd(II) complexes. 2. 2. 1. The productive cycle 270 2. 2. 2. C2H4 misinsertion into an ethylene terminated polyketone 275 chain 2. 3. Experimental and calculated rates for the insertion processes for 277 alternating copolymerization catalyzed by Ni(II) systems 3. COPOLYMERIZATION OF OLEFINS WITH POLAR MONOMERS OTHER 280 THAN CO 3. 1. Preferred binding mode of oxygen containing monomers 282 3. 2. Preferred binding mode of nitrogen containing monomers 285 3. 3.
Olefin metathesis reaction can be considered as one of the most successful organic reactions with many applications in the low molecular weight range and also in the polymer field. The use of catalysts with their selective and effective transformation properties in olefin metathesis I polymerization systems is a growing interest. There has been great effort and competition in developing active and commercially useful catalysts. The main aim of this ASI was to gather several research groups and also the people from industry. to present existing knowledge and latest results in the field. A wide range of topics through homogeneous and heterogeneous aspects have been considered. Attention has been drawn to the metal-carbene and metallacyclobutane complexes as active species, the initiation mechanisms, the stereochemistry and thermodynamics of these reactions. New catalytic systems for the metathesis of alkenes and alkynes and fot' ring opening polymeriZation I block copolymerization reactions have been introduced. Spectroscopic studies for the characteriZation of catalysts, simulation studies explaining the function of chain carrier species and polymer degradation have also been covered. A detailed industrial report concerning the patents and applications in olefin metathesis I cyc1001efin polymerization area, fabrication and derivation has been presented. This volume contains the main lectures and seminars given at the NATO Advanced Study Institute on " Olefin Metathesis and Polymerization Catalysts: Synthesis, Mechanism and Utilization," held at Akcay. Babkesir. Turkey between 10th and 22nd September 1989.
This thesis systematically introduces readers to a new metal-organic framework approach to fabricating nanostructured materials for electrochemical applications. Based on the metal-organic framework (MOF) approach, it also demonstrates the latest ideas on how to create optimal MOF and MOF-derived nanomaterials for electrochemical reactions under controlled conditions. The thesis offers a valuable resource for researchers who want to understand electrochemical reactions at nanoscale and optimize materials from rational design to achieve enhanced electrochemical performance. It also serves as a useful reference guide to fundamental research on advanced electrochemical energy storage materials and the synthesis of nanostructured materials.
Ammonia is one of the 10 largest commodity chemicals produced. The
editor, Anders Nielsen, is research director with one of the
largest industrial catalyst producers. He has compiled a complete
reference on all aspects of catalytical ammonia production in
industry, from thermodynamics and kinetics to reactor and plant
design. One chapter deals with safety aspects of ammonia handling
and storage.
"Heterocycles from Transition Metal Catalysis: Formation and Functionalization" provides a concise summary of the prominent role of late transition metal (palladium, nickel, copper) catalysed processes in the synthesis and functionalization of heterocyclic systems. It gives an introduction to catalytic transformations, an overview of the most important reaction types, and presents synthetically useful catalytic processes classified by the target system and the type of transformation. The book provides a representative selection of transition metal catalysed reactions transformations that are relevant in heterocyclic chemistry. In this way, the authors present a useful resource for members of the academic community looking for a textbook as well as industrial chemists in search of a reference book. This book will be an invaluable resource for synthetic chemists, medicinal chemists, and those more generally interested in applied catalysis.
Corinna Reisinger has developed a new organocatalytic asymmetric epoxidation of cyclic and acyclic , -unsaturated ketones. In this thesis, Corinna documents her methodology, using primary amine salts as catalysts, and hydrogen peroxide as an inexpensive and environmentally benign oxidant. She describes the unprecedented and powerful catalytic asymmetric hydro peroxi dation of , -enones, a process which produces optically active five-membered cyclic peroxyhemiketals in a single operation. She also proves the versatility and synthetic value of the cyclic peroxyhemiketals by converting them into highly enantioenriched acyclic and cyclic aldol products. Currently, these cyclic aldol products are inaccessible by any other synthetic means. Furthermore, cyclic peroxyhemiketals are precursors to optically active 1,2-dioxolanes which are of biological relevance. This work is a breakthrough in the field of asymmetric epoxidation chemistry and outlines the most efficient method in the literature for generating highly enantioselective cyclic epoxyketones known to date.
This book presents advanced photocatalytic technologies for wastewater treatment. The fabrication, surface modification, roles and mechanisms of green catalysts are detailed. The catalysts include nanostructured catalysts, semiconductors, metal and non-metal doped catalysts, surface plasmon materials, graphene oxide-based materials, polymer-based composite materials, heterogenous type I and type II catalysts.
Organic chemistry is constantly concerned with effecting reactions at a particular centre in a complex molecule, and if possible with a high and predictable level of stereoselectivity. In the light of much accumulated ex perience within organic chemistry it is usually possible to assess the likeli hood of alternative reaction pathways at least qualitatively. However, well based expectations can be falsified, and the experiments directed to the synthesis of vitamin B12 which led to Woodward's recognition of orbital symmetry control in organic chemistry are an instructive example. Our limi tations in this respect are very much accentuated in the case of hetero geneous reactions, which present additional problems, and except for very well studied instances, heterogeneous catalysis has remained a relatively empirical area of chemistry. Knowledge in this area has, however, been greatly improved by the development of transition metal complexes which replicate the catalytic properties of the metals, and are effective in a homo geneous reaction system. This development has advanced our understanding of catalysis by making it possible to interpret reactions in strictly molecular terms. In addition, these homogeneously active complexes are frequently more selective than their heterogeneous metallic counterparts either in discriminating between different functional centres in a molecule or in of fering better stereoselectivity. Homogeneous catalysts have now been devised for a number of organic chemical reactions, including hydrogenation, carbonylation, polymerisa tion, and isomerisation and dismutation of alkenes."
Heterogeneous catalysis is a fascinating and complex subject of utmost importance in the present day. Its immense technological and economical importance and the inherent complexity of the catalytic phenomena have stimulated theoretical and experimental studies by a broad spectrum of scientists, including chemists, physicists, chemical engineers, and material scientists. Computational and theoretical techniques are now having a major impact in this field. This book aims to illustrate and discuss the subject of heterogeneous catalysis and to show the current capabilities of the theoretical and computational methods for studying the various steps (diffusion, adsorption, chemical reaction) of heterogeneous catalytic process involving zeolites, metal oxides, and transition metal surfaces. The book covers: the use of techniques of computational chemistry to simulate zeolites, metallic and bimetallic surfaces, and oxide-supported metals; the impact of simulation methods on the understanding of the diffusion and adsorption of molecules and cations within the pores of zeolites, and also on the adsorption of molecules on metal and metal-oxide surfaces; and the applications of quantum-mechanical methods to the study of the reaction mechanism and pathways of the adsorbed molecules. This book is recommended primarily to scientists and graduate students conducting research in the fields of heterogeneous catalysis and surface science. It will also be valuable to advanced undergraduate students wishing to become acquainted with the latest developments in these exciting fields of research, and to experimentalists seeking theoretical support for interpreting their results.
Catalysts are central in modern industrial chemistry and there is an urgent need to develop new catalysts. Such a rapid pace of development brings with it a new set of challenges at all levels of research, from synthesis and characterization to testing and modelling. This book reviews the current status of combinatorial catalysis, scientific catalyst design techniques, methods for preparing inorganic combinatorial libraries, experimental design methods, data processing, system modelling an simulation, and catalyst testing. The individual contributions reveal the development of high throughput catalyst design and test methods and identify the main challenges in the field, including new catalyst preparation techniques, rapid performance evaluation, and new microreactor configurations. Readership: All those working in catalytic process analysis and development. The extensive review of catalysis principles is especially relevant for postgraduate students seeking to pursue studies in catalysis.
This contributed volume provides a critical review of research in the field of Electrochemical Promotion of Catalysis (EPOC). It presents recent developments during the past decade that have led to a better understanding of the field and towards applications of the EPOC concept. The chapters focus on the implementation of EPOC for developing sinter-resistant catalysts, catalysts for hydrogen production, ammonia production and carbon dioxide valorization. The book also highlights the developments towards electropromoted dispersed catalysts and for self-sustained electrochemical promotion which are currently expanding. This authoritative analysis of EPOC is useful for various scientific communities working at the interface of heterogeneous catalysis, solid state electrochemistry and materials science. It is of particular interest to groups whose research focuses on developments towards a better and more sustainable future. |
You may like...
Environmentally Friendly Zeolites…
Rafael Chaves Lima, Lindiane Bieseki, …
Hardcover
R2,653
Discovery Miles 26 530
Carbon-Based Metal Free Catalysts…
Abdullah Mohammed Ahmed Asiri, Anish Khan, …
Paperback
R4,306
Discovery Miles 43 060
Surface Modified Nanomaterials for…
Manoj B. Gawande, Chaudhery Mustansar Hussain, …
Paperback
R4,909
Discovery Miles 49 090
Microbial Surfaces - Structure…
Terri A. Camesano, Charlene Mello
Hardcover
R1,794
Discovery Miles 17 940
Applications of Ion Exchange Materials…
Inam Uddin, Tauseef Ahmad Rangreez, …
Hardcover
R2,674
Discovery Miles 26 740
Heterogeneous Catalysis in Sustainable…
Bela Torok, Christian Schaefer, …
Paperback
R3,975
Discovery Miles 39 750
Rotating Electrode Methods and Oxygen…
Wei Xing, Geping Yin, …
Hardcover
R3,291
Discovery Miles 32 910
|