![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
The origins of the petrochemical industry can be traced back to the 1920s when simple organic chemicals such as ethanol and isopropanol were first prepared on an industrial scale from by-products (ethylene and propylene) of oil refining. This oil-based petrochemical industry, with lower olefms and aromatics as the key building blocks, rapidly developed into the enormous industry it is today. A multitude of products that are indispensible to modern day society, from plastics to pharmaceuticals, are derived from oil and natural gas-based hydro carbons. The industry had its heyday in the '50s and '60s when predictions of future growth rates tended to be exponential curves. However, two developments that took place in the early '70s disturbed this simplistic and optimistic view of the future. Firstly, the publication of the report for the Cub of Rome on the 'Limits to Growth' emphasized the finite nature of non-renewable fossil fuel resources. Secondly, the Oil Crisis of 1973 emphasized the vulnerability of an energy and chemicals industry that is based largely on a single raw material."
Alistair Lennox's thesis reports on the reactivity of organotrifluoroborates, which are becoming increasingly important reagents in synthesis. The thesis is divided into three sections. The first section describes a method for preparing organotrifluoroborates. The second section reports on a mechanistic investigation into the main application of RBF3K reagents as coupling partners in Suzuki-Miyaura coupling, phenomena identified as arising from organotrifluoroborate hydrolysis and fluoride release. The final section reports on a detailed investigation into the hydrolysis mechanism, a prerequisite for their Suzuki-Miyaura coupling, and how it may be predicted and controlled. This research has uncovered many interesting and useful details and shows how problems associated with Suzuki-Miyaura coupling can best be addressed. There has already been wide industrial uptake of the new procedures and insights. The broad nature and clear and succinct style will make the thesis a valuable resource for anyone working in synthesis, organometallic chemistry, or in homogeneous catalysis.
The series Topics in Heterocyclic Chemistry presents critical reviews on present and future trends in the research of heterocyclic compounds. Overall the scope is to cover topics dealing with all areas within heterocyclic chemistry, both experimental and theoretical, of interest to the general heterocyclic chemistry community. The series consists of topic related volumes edited by renowned editors with contributions of experts in the field. All chapters from Topics in Heterocyclic Chemistry are published Online First with an individual DOI. In references, Topics in Heterocyclic Chemistry is abbreviated as Top Heterocycl Chem and cited as a journal
This volume describes the recent developments in the free-radical mediated synthesis and elaboration of heterocycles. The first chapter, dealing with radical cascade processes illustrates the power and the beauty of radical chemistry with some striking examples of total synthesis of complex natural heterocycles. As organic chemists strive towards sustainability, radical chemistry has recently seen major advances and efforts in this direction, including C-H activation of arenes and unactivated alkyl groups. Photochemical activation, for a long time the preferred mode of activation in radical chemistry has also seen an unexpected revival with the advent of visible light metal- and organocatalyzed photoredox processes. A survey of these emerging areas is provided along with the concepts at the origin of these developments. The venerable Minisci reaction allows for direct access to functionalized heterocycles. This process has lately seen an interesting renaissance and is discussed in this volume. Addition of heteroatom-centered radicals onto unsaturated systems constitutes another powerful method to construct heterocycles. Examples of such a strategy are proposed along with the formation of various heterocycles relying on homolytic substitution at sulfur, phosphorus and selenium. Additionally free-radical functionalization of reactive functional groups including isonitriles, isothiocyanates and related unsaturated systems which offer a straightforward route towards useful aromatic and non-aromatic heterocycles are discussed. Finally, as metals are able to trigger single electron transfer both in reductive and oxidative modes this provides another possibility for the synthesis of heterocycles. Significant research efforts have focused on the use of samarium, copper and other metals to access a broad variety of heterocycles in a single pot process, starting from readily available raw material. Examples and mechanistic insights are discussed by experts in this area.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
This is a comprehensive piece of work providing the reader a powerful resource for the design, development and performance evaluation of photocatalytic reactors. This book will be used as a reference for a graduate course in photocatalysis. It will also be valuable to undergraduate students, graduate students, researchers, environmental consultants or advisors, environmental auditors, engineers, technicians, scientists, governmental agencies, and environmental agencies or institutions interested in photocatalysis. This book will be a guide to the understanding of the principles and of the applications of photocatalysis technology. The book is also organized in such a manner that there is always good integration of basic principles, literature review, and applications. The main focus of this book is on the chemical reaction engineering aspects of the heterogeneous photocatalysis. Special attention is addressed to kinetic modeling, reactor irradiation, and reactor design of photochemical reactors. The book also reports an interesting review of practical applications of pollutant conversion in water and air.
Hydrogen peroxide is a chemical that is becoming increasingly fashionable as an oxidant, both in industry and in academia and whose production is expected to increase significantly in the next few years. This growth in interest is largely due to environmental considerations related to the clean nature of hydrogen peroxide as an oxidant, its by-product being only water. To date this chemical has largely been employed as a non-selective oxidant in operations like the bleaching of paper, cellulose and textiles, or in the formulation of detergents, and only to a minimal extent in the manufacture of organic chemicals. This book has been organized to cover the different aspects of the chemistry of hydrogen peroxide. The various chapters into which the book is divided have been written critically by the authors with the general aim of stimulating new ideas and emphasizing those aspects that are likely to lead to new developments in organic synthesis in the coming future.
This advanced textbook teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations. Special emphasis is placed on assessing mass transfer effects. Discussion of adsorption isotherms and reaction models explains the limitations of these models and their application. Ideal and nonideal surfaces are considered, as well as enzyme catalysis. It contains exercises and worked examples abound. The book will be used in courses in kinetics or catalysis and also as a supplement in advanced chemical engineering courses on kinetics and reactor design. It will be used in the disciplines of Chemical Engineering, Materials Science, Fuels Science, and Chemistry.
Valentine P. Ananikov, Irina P. Beletskaya: Alkyne and alkene insertion into metal-heteroatom and metal-hydrogen bonds the key stages of hydrofunctionalization process.- Akihiko Ishii* and Norio Nakata: The Mechanism for Transition Metal-Catalyzed Hydrochalcogenation of Unsaturated Organic Molecules.- A. L. Reznichenko and Kai C. Hultzsch: Early Transition Metal (Group 3-5, Lanthanides and Actinides) and Main Group Metal (Group 1, 2, and 13) Catalyzed Hydroamination.- Naoko Nishina and Yoshinori Yamamoto: Late transition metal catalyzed hydroamination.- Sumod A. Pullarkat and Pak-Hing Leung: Chiral Metal Complex Promoted Asymmetric Hydrophosphinations.- Masato Tanaka: Recent Progress in Transition Metal-Catalyzed Addition Reactions of H-P(O) Compounds with Unsaturated Carbon Linkages.- Christian Bruneau: Group 8 metals-catalyzed O-H bond addition to unsaturated molecules.- Giorgio Abbiati, Egle M. Beccalli, Elisabetta Rossi: Groups 9 and 10 metals-catalyzed O-H bond addition to unsaturated molecules.- Nuria Huguet and Antonio M. Echavarren: Gold-Catalyzed O-H Bond Addition to Unsaturated Organic Molecules.- Akiya Ogawa: Transition-Metal-Catalyzed S-H and Se-H Bonds Addition to Unsaturated Molecules."
In this thesis, the focus is on the study of new catalytic properties of unsupported nanoporous metals in heterogeneous organic reactions under liquid-phase conditions. The author was the first to fabricate nanoporous copper with tunable nanoporosity and apply it for organic reactions. The catalyst can be reused up to ten times without loss of catalytic activity. In addition, the author developed the highly selective semihydrogenation of alkynes using nanoporous gold as a catalyst for the first time, affording Z-alkenes in 100% selectivity, which cannot be realized by traditional catalysts. All of the results described here will help readers to develop new catalytic performance of nanoporous metals for organic reactions.
This book introduces the reader to the state of the art in nanostructured anode and cathode electrocatalysts for low-temperature acid and alkaline fuel cells. It explores the electrocatalysis of anode (oxidation of organic molecules) and cathode (oxygen reduction) reactions. It also offers insights into metal-carbon interactions, correlating them with the catalytic activity of the electrochemical reactions. The book explores the electrocatalytic behaviour of materials based on noble metals and their alloys, as well as metal-metal oxides and metal-free nanostructures. It also discusses the surface and structural modification of carbon supports to enhance the catalytic activity of electrocatalysts for fuel-cell reactions.
There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr
Some years ago, I agreed to contribute a volume to the Academic Press 'Organo metallic Chemistry' series - the metals to be covered were rhodium and iridium. Initially, my plan was to discuss both the fundamental organometallic chemistry and applications in organic synthesis. When the first draft of the manuscript was complete, it was apparent that I had exceeded my allowance of pages by a huge amount. It was then that I decided that the catalysis section warranted separate treatment. I am grateful to Reidel for agreeing to publish this volume on Homogeneous Catalysis with Compounds of Rhodium and Iridium as part of their 'Catalysis by Metal Complexes' series. The material I had for the original Academic Press project covered the litera ture to the end of 1978. I decided to update this to the end of 1982 with a few key references from 1983. It is some measure of the rate of progress in this field that the number of references almost doubled during this revision."
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
Light alkanes tend to be resistant to many forms of activation. The horizontal approach of the present book covers homogeneous, heterogeneous and biological catalysis, thus allowing readers to gain an awareness of progress and ideas in research areas different from their own. The book contains both general chapters, giving an overview of the subject, and specialised contributions that deal with the details and state of the art. A specialist report is also included which gives a critical insight into current progress and discusses future prospects and major challenges. Audience: Newcomers and senior researchers in the field of alkane activation. The mixed theoretical and practical approach will be of interest to researchers and industrialists alike.
The field of organometallic chemistry has emerged over the last twenty-five years or so to become one of the most important areas of chemistry, and there are no signs of abatement in the intense current interest in the subject, particularly in terms of its proven and potential application in catalytic reactions involving hydrocarbons. The development of the organometallic/ catalysis area has resulted in no small way from many contributions from researchers investigating palladium systems. Even to the well-initiated, there seems a bewildering and diverse variety of organic reactions that are promoted by palladium(II) salts and complexes. Such homogeneous reactions include oxidative and nonoxidative coupling of substrates such as olefins, dienes, acetylenes, and aromatics; and various isomerization, disproportionation, hydrogenation, dehydrogenation, car bonylation and decarbonylation reactions, as well as reactions involving formation of bonds between carbon and halogen, nitrogen, sulfur, and silicon. The books by Peter M. Maitlis - The Organic Chemistry of Palladium, Volumes I, II, Academic Press, 1971 - serve to classify and identify the wide variety of reactions, and access to the vast literature is available through these volumes and more recent reviews, including those of J. Tsuji [Accounts Chem. Res. , 6, 8 (1973); Adv. in Organometal. , 17, 141 (1979)], R. F. Heck [Adv. in Catat. , 26, 323 (1977)], and ones by Henry [Accounts Chem. Res. , 6, 16 (1973); Adv. in Organometal. , 13, 363 (1975)]. F. R. Hartley's book - The Chemistry of Platinum and Palladium, App!. Sci. Pub!.
Johannes G. de Vries: Pd-catalyzed coupling reactions.- Gregory T. Whiteker and Christopher J. Cobley: Applications of Rhodium-Catalyzed Hydroformylation in the Pharmaceutical, Agrochemical and Fragrance Industries.- Philippe Dupau: Ruthenium-catalyzed Selective Hydrogenation for Flavor and Fragrance Applications.- Hans-Ulrich Blaser, Benoit Pugin and Felix Spindler: Asymmetric Hydrogenation.- Ioannis Houpis: Case Study: Sequential Pd-catalyzed Cross-Coupling Reactions; Challenges on Scale-up.- Adriano F. Indolese: Pilot Plant Scale Synthesis of an Aryl-Indole - Scale up of a Suzuki Coupling.- Per Ryberg: Development of a Mild and Robust Method for Palladium Catalysed Cyanation on Large Scale.- Cheng-yi Chen: Application of Ring Closing Metathesis Strategy to the Synthesis of Vaniprevir (MK-7009), a 20-Membered Macrocyclic HCV Protease Inhibitor.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society."
This thesis presents detailed mechanistic studies on a series of important C-H activation reactions using combined computational methods and mass spectrometry experiments. It also provides guidance on the design and improvement of catalysts and ligands. The reactions investigated include: (i) a nitrile-containing template-assisted meta-selective C-H activation, (ii) Pd/mono-N-protected amino acid (MPAA) catalyzed meta-selective C-H activation, (iii) Pd/MPAA catalyzed asymmetric C-H activation reactions, and (iv) Cu-catalyzed sp3 C-H cross-dehydrogenative-coupling reaction. The book reports on a novel dimeric Pd-M (M = Pd or Ag) model for reaction (i), which successfully explains the meta-selectivity observed experimentally. For reaction (ii), with a combined DFT/MS method, the author successfully reveals the roles of MPAA ligands and a new C-H activation mechanism, which accounts for the improved reactivity and high meta-selectivity and opens new avenues for ligand design. She subsequently applies ion-mobility mass spectrometry to capture and separate the [Pd(MPAA)(substrate)] complex at different stages for the first time, providing support for the internal-base model for reaction (iii). Employing DFT studies, she then establishes a chirality relay model that can be widely applied to MPAA-assisted asymmetric C-H activation reactions. Lastly, for reaction (iv) the author conducts detailed computational studies on several plausible pathways for Cu/O2 and Cu/TBHP systems and finds a reliable method for calculating the single electron transfer (SET) process on the basis of benchmark studies.
This work describes novel, effective hydrogen-bond (HB) donor catalysts based on a known bifunctional tertiary amine-thiourea, a privileged structure, which has been proven to be one of the most widely used organocatalysts. These HB donor catalysts derived from quinazoline and benzothiadiazine were initially synthesized as novel HB donors with their HB-donating abilities being measured by analytical methods. They were found to be effective for a variety of asymmetric transformations including Michael reactions of a, b- unsaturated imides and hydrazination reactions of 1,3-dicarbonyl compounds. Thiourea catalysts that have an additional functional group are also described. Specifically, thioureas that bear a hydroxyl group were synthesized and subsequently used as novel bifunctional organocatalysts for catalytic, asymmetric Petasis-type reactions involving organoboronic acids as nucleophiles. These addition reactions were difficult to achieve using existing organocatalysts. One of the developed catalytic methods can be applied to the synthesis of biologically interesting peptide- derived compounds possessing unnatural vinyl glycine moieties. These findings introduce new criteria required for the development of organocatalysts for asymmetric reactions, thus making a significant contribution to the field of organocatalysis.
Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology includes peer-reviewed contributions based on carefully selected presentations given at the 17th International Workshop on Quantum Systems in Chemistry, Physics, and Biology. New trends and state-of-the-art developments in the quantum theory of atomic and molecular systems, and condensed matter (including biological systems and nanostructures) are described by academics of international distinction.
In this thesis Colm Duffy reviews the chemistry and biology of stable lipoxin analogues. Colm has prepared for the first time ever a pyridine-containing LXA4 analogue in enantiomerically pure form. Biological evaluation determined that both epimers at the benzylic position suppress key cytokines known to be involved in inflammatory disease, with the (R)-epimer proving most efficacious. Moreover the author developed an excellent route to a related thiophene-containing analogue that also showed interesting biological activity. Both routes have inspired further work in the synthesis of further heteroaromatic analogues for biological evaluation. "
Photosensitization and photocatalysis refer to processes by which permanent chemical transformations are induced on substrates (organic/inorganic) by radiation to which the substrates themselves are transparent. Such transformations can be highly specific, very efficient, and occur under mild conditions. Herein lies the power of photochemical methods for possible applications in the field of conversion and storage of solar energy. This book provides a recent survey of the progress in this important area in catalysis, with an emphasis on inorganic complexes and organometallic compounds as the key light aborbers. The book is organized in three parts: fundamentals, followed by applications. Discussions cover a wide variety of photosensitized or photocatalyzed reactions: decomposition of water, reduction of CO2 and CO; spectral sensitization in photoelectrochemical cells; transformations (oxidation, reduction, isomerization, hydrogenation, dehydrogenation, carbonylation, etc.) of organics such as alkanes, alkenes, alcohols, etc. In view of the variety of systems (sensitizers, substrates) and the topics covered, the volume is unique in the field of photochemistry and will appeal to academic and industrial researchers in various subdisciplines of chemistry, material science and catalysis. |
![]() ![]() You may like...
Handbook of Animal Models in…
Colin R. Martin, Vinood Patel, …
Hardcover
R5,217
Discovery Miles 52 170
Neurological Complications of Systemic…
Herbert B. Newton, Mark G Malkin
Hardcover
R5,342
Discovery Miles 53 420
Glial-Neuronal Signaling in…
Jeffrey G. Tasker, Jaideep S. Bains, …
Hardcover
R4,637
Discovery Miles 46 370
|