![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Catalysis
Handbook of Spent Hydroprocessing Catalysts, Second Edition, covers all aspects of spent hydroprocessing catalysts, both regenerable and non-regenerable. It contains detailed information on hazardous characteristics of spent and regenerated catalysts. The information forms a basis for determining processing options to make decisions on whether spent catalysts can be either reused on refinery site after regeneration or used as the source of new materials. For non-regenerable spent catalysts, attention is paid to safety and ecological implications of utilizing landfill and other waste handling and storage options to ensure environmental acceptance. As such, this handbook can be used as a benchmark document to develop threshold limits of regulated species.
The demand for hydroprocessing catalysts has shown an increasing trend, because of their applications in refining of petroleum and biofuels, in order to comply with strict environmental regulations controlling emissions from transportation vehicles.Transport fuel is dominated by fossil fuels with carbon emission intensive production methods. If we are to move away from these sources, the alternative is to produce liquid fuels from agricultural stocks - crops, crop waste, forestry waste or algae. Converting these feedstocks into high quality fuels is a considerable challenge.By describing the current status in processing agricultural feedstock into high quality liquid transport fuels, the authors set out the means to develop better chemistry and catalysis for the necessary conversion processes. This book offers an intriguing insight into the mechanisms and protocols involved in new hydroprocessing catalysts and processes, and covers the methods for upgrading these liquids to modern transport vehicles suitable for operation in modern gasoline and diesel engines.It provides an introduction to the mechanism of hydroprocessing reactions, application of different metals in hydroprocessing, the effect of catalyst supports, applications in refining new feedstock, renewable fuels standards, the management of spent hydroprocessing catalysts, and hydrogen production.Hydroprocessing Catalysts and Processes will prove useful for both researchers in academe and industry concerned with future fuels development and treatment to produce current and future liquid transport fuels.
Catalysts are increasingly used by chemists engaged in fine chemical synthesis within both industry and academia. Today, there exists a huge choice of high-tech catalysts, which add enormously to the repertoire of synthetic possibilities. However, catalysts are occasionally capricious, sometimes difficult to use and almost always require both skill and experience in order to achieve optimal results. This series aims to be a practical help for advanced undergraduate, graduate and postgraduate students, as well as experienced chemists in industry and academia working in organic and organometallic synthesis. The series features:
Arguably, catalysis by polyoxometalates has been one of the most successful areas in fundamental and applied catalysis in the last few decades. Industry is using these catalysts for a number of large-scale chemical processes. On the other hand, the enormous versatility of polyoxometalates offers significant opportunities for clean synthesis of fine and speciality chemicals. Much research is focussed on the use of these catalysts in laboratory scale synthesis. The second volume in the series presents a survey of recent developments in catalysis by polyoxometalates for fine chemicals synthesis. One chapter concentrates on the practical preparation of specific acid and oxidation catalysts. Other chapters describe in detail the use in homogeneous and heterogeneous syntheses.
The demand for novel efficient and environmentally sustainable chemo, regio- and stereoselective catalyst systems for the oxidation of organic substrates is continuously growing in line with toughening economic and environmental constraints. This book addresses these issues; it consists of eleven chapters written by world-recognized experts in green and sustainable oxidation catalysis. The most urgent and challenging topics, in the judgment of the editor, such as green asymmetric epoxidations, sulfoxidatiuons, C-H oxidations; oxidation catalysis by polyoxometalates and oxidations in non-conventional solvents, etc. have been critically reviewed in this book. Both fundamental aspects, such as catalysts design, catalytic properties, nature of catalytically active sites and reaction mechanisms, and practical outlook of the oxidations have been addressed by the authors. The book appeals to a broad readership, particularly graduate students, employees of universities and research organizations, and industrial researchers, particularly those working in the areas of homogeneous oxidation catalysis, asymmetric synthesis, organocatalysis, sustainable catalytic processes and green chemistry, mechanisms of catalytic reactions, synthesis of bioactive compounds, biomimetic chemistry, etc. Konstantin Bryliakov is Leading Researcher at the Boreskov Institute of Catalysis. In 2016, he was elected Honorary Professor of the Russian Academy of Sciences.
Over the past decade, much research effort has been devoted to the design and synthesis of new reagents and catalysts that can influence carbon-hydrogen bond activation, mainly because of the prospect that C H activation could enable the conversion of cheap and abundant alkanes into valuable functionalized organic compounds. "Alkane C-H Activation by Single-Site Metal Catal"ysis presents the current state-of-the-art development in the catalytic systems for the catalytic trans-formations of alkanes under homogeneous conditions. Chapter 1 offers a comprehensive summary of the main discoveries realized so far. Chapter 2 reviews the so-called electrophilic activation, initiated by Shulpin in the late 60s, and the base for the Catalytica system. Chapter 3 examines the catalytic borylation of alkanes, discovered by Hartwig, whereas chapter 4 provides an updated vision of the alkane dehydrogenation reaction. Chapter 5 covers the oxygenation of C-H bonds, a field of enormous interest with bioinorganic im-plications, and finally chapter 6 presents the functionalization of alkane C-H bonds by carbene or nitrene insertion. The history of C-H bond activation, and the current research described in this book, highlight the current research and present the reader with an outlook of this field which continues to be explored by an increasingly visionary and enthusiastic group of organic, organometallic, biological and physical chemists."
This much-needed resource brings together a wealth of procedures
for the synthesis and practical use of diazocarbonyl compounds. It
features methods for the preparation of important catalysts and for
applications of diazocarbonyl compounds within each of the main
transformation categories-including in-depth coverage of
cyclopropanation, C-H and X-H insertion, Wolff rearrangement, ylide
formation, aromatic cycloaddition and substitution, and many other
useful reactions.
This book focuses on molecular space chemistry, which is recognized as an important concept for the design of novel functional materials and catalysts. A wide variety of topics and ideas included in this book are based on that concept. The book showcases recent representative examples of molecular space design to create functional materials and catalysts possessing unique properties. This unique volume will be of great interest to chemists in a wide variety of research fields, including organic, inorganic, biological, polymer, and supramolecular chemistry. Readers will obtain new ideas and directions to create novel functional molecules, and those ideas will lead to innovative views of science.
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight microkinetic modeling, encapsulated metals for confined catalysis, recent advances on the direct decomposition of NOx and heteropolyacid catalysts. There is also a chapter reviewing methods for estimating adsorption energies on catalytic surfaces, which will provide information from both fundamental and technological points of view. Appealing broadly to researchers in academia and industry, the detailed chapters bridge the gap from academic studies in the laboratory to practical applications in industry, not only for the catalysis field, but also for environmental protection. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.
New Materials for Catalytic Applications proposes the use of both new and existing materials for catalytic applications, such as zeolites, metal oxides, microporous and mesoporous materials, and monocrystals. In addition, metal-oxides are discussed from a new perspective, i.e. nano- and photocatalytic applications. The material presents these concepts with a new focus on strategies in synthesis, synthesis based on a rational design, the correlation between basic properties/potential applications, and new catalytic solutions for acid-base, redox, hydrogenation, photocatalytic reactions, etc.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
This book systematically summarizes the advanced development of carbon-based nanomaterials for electrochemical catalysis, and it is comprised of four sections. The first section discusses about the fundamental synthesis, characterization techniques, and catalytic effects on the energy conversion and storage mechanism. The second section elaborately reviews various types of electrocatalytic reactions on carbon-based materials and their performance. The third section focuses on batteries about carbon-based materials with different storage mechanism. And the last one, the following enlightenment in terms of theoretical development and experimental research is provided to the general readers: 1) Precise design and construction of local atomic and electronic structures at the interface of catalysts; 2) Selective activation and directed conversion of carbon-based energy-carrying molecules at the interface; 3) Interaction mechanism and regulation of catalyst solid surface interface properties under environment and external field. This book will be useful for researchers and students who are interested in carbon-based nanomaterials, electrochemical catalysts and energy storage.
Advances in Catalysis fills the gap between the journal papers and textbooks across the diverse areas of catalysis research. For more than 60 years, this series has been dedicated to recording progress in the field of catalysis, providing the scientific community with comprehensive and authoritative reviews. This series is an invaluable and comprehensive resource for chemical engineers and chemists working in the field of catalysis in both academia and industry.
This book presents a detailed history of chemical warfare development during the First World War and discusses design approaches to gas masks and the performance of new filter materials that decontaminate chemical warfare agents (CWA) when applied in the vapor phase. It describes multifunctional nanocomposites containing zinc and zirconium (hydr)oxides, graphite oxide and silver or gold nanoparticles as reactive adsorbents for the degradation of the CWAs vapors. In addition it examines in detail the surface properties that are most important in the mineralization performance.
This book proposes a novel concept for molecular recognition. In the field of asymmetric synthesis approaching the mature science, asymmetric discrimination and catalytic synthesis of chiral supramolecules still stand as unsolved problems. The extreme difficulty in asymmetric synthesis of such supramolecules may result from the mobile nature of supramolecular chirality. Here the author shows the first highly enantioselective synthesis of mechanically chiral supramolecules. In the presence of a chiral organocatalyst, a mechanically planar chiral rotaxane was obtained with p erfect enantiopurity (>99% ee) with an excellent selectivity. The dynamic and flexible recognition mode enabled asymmetric synthesis of supramolecules with conformational flexibility and mobility. The recognition mode of the catalyst is a contrast to the traditional static and rigid recognition mode of the typical conventional catalysts. The concept of dynamic molecular recognition will be adopted as a novel concept in a wide range of fields beyond the field of organic chemistry, including material chemistry, biochemistry, and medicinal chemistry.
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
Catalysis by Materials with Well-Defined Structures examines the latest developments in the use of model systems in fundamental catalytic science. A team of prominent experts provides authoritative, first-hand information, helping readers better understand heterogeneous catalysis by utilizing model catalysts based on uniformly nanostructured materials. The text addresses topics and issues related to material synthesis, characterization, catalytic reactions, surface chemistry, mechanism, and theoretical modeling, and features a comprehensive review of recent advances in catalytic studies on nanomaterials with well-defined structures, including nanoshaped metals and metal oxides, nanoclusters, and single sites in the areas of heterogeneous thermal catalysis, photocatalysis, and electrocatalysis. Users will find this book to be an invaluable, authoritative source of information for both the surface scientist and the catalysis practitioner
This updated edition of a widely admired text provides a user-friendly introduction to the field that requires only routine mathematics. The book starts with the elements of fluid mechanics and heat transfer, and covers a wide range of applications from fibrous insulation and catalytic reactors to geological strata, nuclear waste disposal, geothermal reservoirs, and the storage of heat-generating materials. As the standard reference in the field, this book will be essential to researchers and practicing engineers, while remaining an accessible introduction for graduate students and others entering the field. The new edition features 2700 new references covering a number of rapidly expanding fields, including the heat transfer properties of nanofluids and applications involving local thermal non-equilibrium and microfluidic effects.
This volume gives a detailed account into how renewables can be transformed into value-added products via homogeneous catalysis, especially via transiton metal homogeneous catalysis. The most important catalytic reactions of oleochemicals, isoprenoids, carbohydrates, lignin, proteins and carbon dioxide are described. Special emphasis is placed on carbon-carbon linkage reactions (hydroformylations, dimerisations, telomerisations, metathesis, polymerisations etc.), hydrogenations, oxidations and other important homogeneous reactions (such as isomerisations, hydrosilylations etc.). Also, tandem reactions including isomerising hydroformylations are presented. Wherever possible, the authors have included mechanistic, kinetic, and technical aspects. The reader is therefore given a total overview of the status quo of homogeneous catalysis directed to the most important renewables.
Barry Trost: Transition metal catalyzed allylic alkylation.- Jeffrey W. Bode: Reinventing Amide Bond Formation.- Naoto Chatani and Mamoru Tobisu: Catalytic Transformations Involving the Cleavage of C-OMe Bonds.- Gregory L. Beutner and Scott E. Denmark: The Interplay of Invention, Observation and Discovery in the Development of Lewis Base Activation of Lewis Acids for Catalytic Enantioselective Synthesis.- David R. Stuart and Keith Fagnou: The Discovery and Development of a Palladium(II)-Catalyzed Oxidative Cross-Coupling of Two Unactivated Arenes.- Lukas Goossen and Kathe Goossen: Decarboxylative Cross-Coupling Reactions.- A. Stephen K. Hashmi: Gold-Catalyzed Organic Reactions.- Ben List: Developing Catalytic Asymmetric Acetalizations.- Steven M. Bischof, Brian G. Hashiguchi, Michael M. Konnick, and Roy A. Periana: The "De Novo"Design of CH Bond Hydroxylation Catalysts.- Benoit Cardinal-David, Karl A. Scheidt: Carbene Catalysis: Beyond the Benzoin and Stetter Reactions.- Kenso Soai and Tsuneomi Kawasaki: Asymmetric autocatalysis of pyrimidyl alkanol.- Douglas C. Behenna and Brian M. Stoltz: Natural Products as Inspiration for Reaction Development: Catalytic Enantioselective Decarboxylative Reactions of Prochiral Enolate Equivalents. Hisashi Yamamoto: Acid Catalysis in Organic Synthesis."
Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Carboamination or Carboalkoxylation Reactions, by John P. Wolfe Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination, Aminoalkoxylation, or Dialkoxylation Reactions, by Sherry R. Chemler Synthesis of Heterocycles via Metal-Catalyzed Wacker-Type Oxidative Cyclization Reactions of Alkoxy- or Amino-Alkenes, by Wanbin Zhang Synthesis of Saturated Heterocycles via Metal-Catalyzed Hydroamination or Hydroalkoxylation Reactions, by Lisa D. Julian Synthesis of Saturated Heterocycles via Metal-Catalyzed Allylic Alkylation Reactions, by Aaron Aponick Synthesis of Heterocycles via Metal-Catalyzed Cascade/Domino Reactions that Generate a C-N or C-O Bond, by Mark Lautens Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions that Generate a C-N or C-O Bond, by Jerome Waser
This book offers an overview of the recent studies and advances in environmental catalysis by nanomaterials, considering both the fundamental and the technological aspects. It offers contributions in different areas of environmental catalysis, including the catalytic and photocatalytic abatement of environmentally hazardous effluents from stationary or mobile sources, the valorization of waste and the production of sustainable energy. In other words, this monograph provides an overview of modern environmental and energy related applications with a particular emphasis to nano-sized catalytic materials. Recent concepts, experimental data and advanced theories are reported in this book to give evidence of the environmental and sustainable applications that can be found in the highly interdisciplinary field of catalysis.
Gerard van Koten: The Mono-anionic ECE-Pincer Ligand - a Versatile Privileged Ligand Platform: General Considerations.- Elena Poverenov, David Milstein: Non-Innocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes.- Dean M. Roddick: Tuning of PCP Pincer Ligand Electronic and Steric Properties.- Gemma R. Freeman, J. A. Gareth Williams: Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence.- Davit Zargarian, Annie Castonguay, Denis M. Spasyuk: ECE-Type Pincer Complexes of Nickel.- Roman Jambor and Libor Dostal: The Chemistry of Pincer Complexes of 13 - 15 Main Group Elements.- Kalman J. Szabo: Pincer Complexes as Catalysts in Organic Chemistry.- Jun-ichi Ito and Hisao Nishiyama: Optically Active Bis(oxazolinyl)phenyl Metal Complexes as Multi-potent Catalysts.- Anthony St. John, Karen I. Goldberg, and D. Michael Heinekey: Pincer Complexes as Catalysts for Amine Borane Dehydrogenation.- Dmitri Gelman and Ronit Romm: PC(sp3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications.- Jennifer Hawk and Steve Craig: Physical Applications of Pincer Complexes.
Catalysis literature can be difficult to read if there is not a sufficient understanding of the underlying connections between the chemical, materials and engineering aspects of catalysis. As a result, many students lack the depth of knowledge to effectively understand the topic.Introduction to Heterogeneous Catalysis solves this issue by presenting not only the basic concepts of catalysis but also, right from the beginning, integrating the chemical, materials and engineering aspects of catalysis in examples taken directly from industry.Aimed at master's and PhD students with a limited background in chemistry, this book provides a thorough introduction to the principles behind catalysis that will enable readers to understand the concepts and analyse the literature necessary for its study.
Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts presents a complete overview of the selective catalytic reduction of NOx by ammonia/urea. The book starts with an illustration of the technology in the framework of the current context (legislation, market, system configurations), covers the fundamental aspects of the SCR process (catalysts, chemistry, mechanism, kinetics) and analyzes its application to useful topics such as modeling of full scale monolith catalysts, control aspects, ammonia injections systems and integration with other devices for combined removal of pollutants. |
You may like...
Electron Microscopy - Novel Microscopy…
Masashi Arita, Norihito Sakaguchi
Hardcover
R2,557
Discovery Miles 25 570
South African Constitutional Law In…
Pierre de Vos, Warren Freedman
Paperback
(1)R781 Discovery Miles 7 810
Confocal Microscopy, An Issue of…
Jane M Grant-kels, Giovanni Pellacani, …
Hardcover
R2,143
Discovery Miles 21 430
|