![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Analytical chemistry > Qualitative analytical chemistry > Chromatography
The role of laboratory research and simulations in advancing our understanding of solar system ices (including satellites, KBOs, comets, and giant planets) is becoming increasingly important. Understanding ice surface radiation processing, particle and radiation penetration depths, surface and subsurface chemistry, morphology, phases, density, conductivity, etc., are only a few examples of the inventory of issues that are being addressed by Earth-based laboratory research. As a response to the growing need for cross-disciplinary dialog and communication in the Planetary Ices science community, this book aims to achieve direct dialog and foster focused collaborations among the observational, modeling, and laboratory research communities.
Due to its high sensitivity and selectivity, liquid chromatography-mass spectrometry (LC-MS) is a powerful technique. It is used for various applications, often involving the detection and identification of chemicals in a complex mixture. Ultra Performance Liquid Chromatography Mass Spectrometry: Evaluation and Applications in Food Analysis presents a unique collection of up-to-date UPLC-MS/MS methods for the separation and quantitative determination of components, contaminants, vitamins, and aroma and flavor compounds in a wide variety of foods and food products. The book begins with an overview of the history, principles, and advancement of chromatography. It discusses the use of UHPLC techniques in food metablomics, approaches for analysis of foodborne carcinogens, and details of UPLC-MS techniques used for the separation and determination of capsaicinoids. Chapters describe the analysis of contaminants in food, including pesticides, aflatoxin, perfluorochemicals, and acrylamide, as well as potentially carcinogenic heterocyclic amines in cooked foods. The book covers food analysis for beneficial compounds, such as the determination of folate, vitamin content analysis, applications for avocado metabolite studies, virgin olive oil component analysis, lactose determination in milk, and analysis of minor components of cocoa and phenolic compounds in fruits and vegetables. With contributions by experts in interdisciplinary fields, this reference offers practical information for readers in research and development, production, and routing analysis of foods and food products.
The isolation and structural characterization of substances present at very low concentrations, as is necessary to satisfy regulatory requirements for pharmaceutical drug degradants and impurities, can present scientific challenges. The coupling of HPLC with NMR spectroscopy has been at the forefront of cutting-edge technologies to address these issues. LC-NMR: Expanding the Limits of Structure Elucidation presents a comprehensive overview of key concepts in HPLC and NMR that are required to achieve definitive structure elucidation with very low levels of analytes. Because skill sets from both of these highly established disciplines are involved in LC-NMR, the author provides introductory background to facilitate readers' proficiency in both areas, including an entire chapter on NMR theory. The much-anticipated second edition provides guidance in setting up LC-NMR systems, discussion of LC methods that are compatible with NMR, and an update on recent hardware and software advances for system performance, such as improvements in magnet design, probe technology, and solvent suppression techniques that enable unprecedented mass sensitivity in NMR. This edition features methods to quantify concentration and assess purity of isolated metabolites on the micro scale and incorporates computational approaches to accelerate the structure elucidation process. The author also includes implementation and application of qNMR and automated and practical use of computational chemistry combined with QM and DFT to predict highly accurate NMR chemical shifts. The text focuses on current developments in chromatographic-NMR integration, with particular emphasis on utility in the pharmaceutical industry. Applications include trace analysis, analysis of mixtures, and structural characterization of degradation products, impurities, metabolites, peptides, and more. The text discusses novel uses and emerging technologies that challenge detection limits as well future directions for this important technique. This book is a practical primary resource for NMR structure determination-including theory and application-that guides the reader through the steps required for isolation and NMR structure elucidation on the micro scale.
Advanced Separations by Specialized Sorbents opens a new window into sorbent materials, presenting fundamental principles for their syntheses and adsorption properties. The book presents advanced techniques used to create specialized sorbents with a wide range of functions that can be used to enhance the separation and/or purification of useful bioactive compounds, heavy metals, dyes, and other substances. It discusses the most recent developments in the field of separation processes, covering specialized sorbents such as monolith cryogels, composite hydrogels, metal-impregnated ion exchangers, and molecularly imprinted polymers. The book provides a comprehensive discussion of the selectivity in separation processes by composite materials based on synthetic polymers/biopolymers and inorganic particles. It is a comprehensive resource for academic and research scientists as well as students interested in the preparation, characterization, and application of specialized sorbents.
The second edition of Gas Chromatography and Mass Spectrometry: A Practical Guidefollows thehighly successfulfirstedition by F.G. Kitson, B.S. Larsen, and C.N. McEwen (1996), which was designed as an indispensible resource for GC/MS practitioners regardless of whether they are a novice or well experienced. The Fundamentals section has been extensively reworked from the original edition to give more depth of an understanding of the techniques and science involved with GC/MS. Even with this expansion, the original brevity and simple didactic style has been retained. Information on chromatographic peak deconvolution has been added along with a more in-depth understanding of the use of mass spectral databases in the identification of unknowns. Since the last edition, a number of advances in GC inlet systems and sample introduction techniques have occurred, and they are included in the new edition. Other updates include a discussion on fast GC and options for combining GC detectors with mass spectrometry. The section regarding GC Conditions, Derivatization, and Mass
Spectral Interpretation of Specific Compound Types has the same
number of compound types as the original edition, but the
information in each section has been expanded to not only explain
some of the spectra but to also explain why certain fragmentations
take place. The number of Appendices has been increased from 12 to
17. The Appendix on Atomic Masses and Isotope Abundances has been
expanded to provide tools to aid in determination of elemental
composition from isotope peak intensity ratios. An appendix with
examples on "Steps to follow in the determination of elemental
compositions based on isotope peak intensities" has been added.
Appendices on whether to use GC/MS or LC/MS, third-party software
for use in data analysis, list of information required in reporting
GC/MS data, X+1 and X+2 peak relative intensities based on the
number of atoms of carbon in an ion, and list of available EI mass
spectral databases have been added. Others such as the ones on
derivatization, isotope peak patterns for ions with Cl and/or Br,
terms used in GC and in mass spectrometry, and tips on setting up,
maintaining and troubleshooting a GC/MS system have all been
expanded and updated.
Subcritical water is a green extraction solvent compared to conventional extraction solvents. While experimental results on subcritical water extraction (SWE) technology have been published piecemeal, there has been no comprehensive review of the state of the art. Green Extraction in Separation Technology fills that gap, serving to cover extracting with subcritical water as an environmentally friendly solvent. FEATURES Presents new technologies for extracting natural compounds from plants and compares the advantages and disadvantages versus SWE Explains research on SWE over the last 15 years Offers an overview of the solubility of different compounds in SWE and related theoretical content Discusses modeling of SWE and describes the development of a new model for this process This monograph is aimed at researchers and advanced students in chemical and biochemical engineering.
Computational Quantum Chemistry, Second Edition, is an extremely useful tool for teaching and research alike. It stipulates information in an accessible manner for scientific investigators, researchers and entrepreneurs. The book supplies an overview of the field and explains the fundamental underlying principles. It also gives the knowledge of numerous comparisons of different methods. The book consists of a wider range of applications in each chapter. It also provides a number of references which will be useful for academic and industrial researchers. It includes a large number of worked-out examples and unsolved problems for enhancing the computational skill of the users. Features Includes comprehensive coverage of most essential basic concepts Achieves greater clarity with improved planning of topics and is reader-friendly Deals with the mathematical techniques which will help readers to more efficient problem solving Explains a structured approach for mathematical derivations A reference book for academicians and scientific investigators Ram Yatan Prasad, PhD, DSc (India), DSc (hc) Colombo, is a Professor of Chemistry and former Vice Chancellor of S.K.M University, Jharkhand, India. Pranita, PhD, DSc (hc) Sri Lanka, FICS, is an Assistant Professor of Chemistry at Vinoba Bhave University, India.
A single-source reference describing how and why gas chromatography and mass spectrometry instruments work. Describes a wide range of technologies and offers guidance for their optimum use, outlining good practice, routine procedures, and trouble shooting.
The field of bioseparation, and biochromatography in particular, is advancing very rapidly as our knowledge of the properties of molecules and atomic forces increases. This volume covers the basic principles of biochromatography in detail. It assesses different techniques and includes a large number of applications, providing the reader with a multidisciplinary perspective that gives the insight to master the many chromatographic methods. Biochromatography: Theory and Practice is a valuable tool for graduate and research scientists, technicians, engineers and teachers in a range of fields including biochemistry, biotechnology, biorecognition and chromatography.
Membrane-Distillation in Desalination is an attempt to provide the latest knowledge, state of the art and demystify outstanding issues that delay the deployment of the technology on a large scale. It includes new updates and comprehensive coverage of the fundamentals of membrane distillation technology and explains the energy advantage of membrane distillation for desalination when compared to traditional techniques such as thermal or reverse osmosis. The book includes the latest pilot test results from around the world on membrane distillation desalination.
This first book on load-pull systems is intended for readers with a broad knowledge of high frequency transistor device characterization, nonlinear and linear microwave measurements, RF power amplifiers and transmitters. Load-Pull Techniques with Applications to Power Amplifier Design fulfills the demands of users, designers, and researchers both from industry and academia who have felt the need of a book on this topic. It presents a comprehensive reference spanning different load-pull measurement systems, waveform measurement and engineering systems, and associated calibration procedures for accurate large signal characterization. Besides, this book also provides in-depth practical considerations required in the realization and usage of load-pull and waveform engineering systems. In addition, it also provides procedure to design application specific load-pull setup and includes several case studies where the user can customize architecture of load-pull setups to meet any specific measurement requirements. Furthermore, the materials covered in this book can be part of a full semester graduate course on microwave device characterization and power amplifier design.
Carbon membranes have great advantages of strong mechanical strength and high chemical stabilities, as well as high separation performance to reach the industrial attractive region. Further improvement on membrane performance can potentially offset the relatively high production cost compared to polymeric membranes. However, there are still some challenges related to fabrication of asymmetric carbon membranes, the controlling of structure and pore-size and module up-scaling for commercial application. The aim of this book is to provide the fundamentals on carbon membrane materials for the young researchers and engineers to develop frontier membrane materials for energy efficient separation process. This book describes the status and perspectives of both self-supported and supported carbon membranes from fundamentals to applications. The key steps on the development of high performance carbon membranes including precursor selection, tuning carbon membrane structure and regeneration are discussed. In the end, different potential applications both in gas and liquids separation are well described, and the future directions for carbon membrane development were pointed out. To this end, membrane science and engineering are set to play crucial roles as enabling technologies to provide energy efficient and cost-effective future solutions for energy and environment related processes. Based on this approach the research projects which are trying to find attractive carbon materials in our days are many. The published papers, per year, in the topic of carbon membranes, especially for biogas upgrading, natural gas sweetening and hydrogen purification, are numerous with very high impact. However, only few are the books which include relevant to the topic of carbon membrane technology. This book offers the condensed and interdisciplinary knowledge on carbon membranes, and provides the opportunity to the scientists who are working in the field of carbon membrane technology for gas and liquid separations to present, share, and discuss their contributions within the membrane community.
Tandem Techniques Raymond P. W. Scott Chemistry Department, Georgetown University, Washington DC, USA and Chemistry Department, Birkbeck College, University of London, UK Analytical techniques based on separation processes, such as chromatography and electrophoresis, are finding a growing range of applications in chemical, pharmaceutical and clinical laboratories. The Wiley Separation Science Series provides the analyst in these laboratories with well focused books covering individual techniques, so that they can be applied more efficiently and effectively to contemporary analytical problems. Tandem Techniques describes the function and uses of instruments that comprise the combination of a separation technique (e.g. chromatography) with an identifying technique, (e.g. spectroscopy) for the rapid separation and identification of the components of complex mixtures. The basic principles of the commonly used separation techniques (i.e. gas chromatography, liquid chromatography, thin layer chromatography and capillary electrophoresis) are discussed, together with the basic principles of the spectroscopic techniques employed with them. The book is divided into four sections; the first dealing with the fundamental principles of separation and identification techniques; the second with gas chromatography tandem systems; the third with tandem systems associated with liquid chromatography and similar separation techniques; the fourth section with tandem instruments combined with capillary electrophoresis. The various interfaces involved are discussed and described in detail and, where possible, comparative performance data is presented particularly with respect to system sensitivity. The morerecent developments in the different techniques are included incorporating references published up to mid 1996. Tandem Techniques will be an essential handbook for all chemists involved in general analysis product assay and environmental monitoring. It will be particularly useful to those scientists concerned with the many and varied aspects of separation science.
Membranes are an energy efficient separation technology that are now the basis for many water treatment and food processing applications. However, there is the potential to improve the operating performance of these separations and to extend the application of membranes to energy production, gas separations, organic solvent-based separations, and biomedical applications through novel membrane materials. This book contains 20 chapters written by leading academic researchers on membrane fabrication and modification techniques and provides a comprehensive overview on the recent developments of membrane technology. Membranes can be manufactured from a range of materials including polymeric compounds, and ceramic materials, and both these materials are considered in the book. There are 5 chapters on water and wastewater membranes that cover the fabrication of thin film (TFC) composite membranes for nanofiltration(NF)/reverse osmosis (RO)/forward osmosis (FO) applications, stimuli responsive membranes, electrospun membranes, porous ceramic membranes, and polymeric ultrafiltration (UF) manufacture and modification. There are another 6 chapters on gas separation that consider carbon membranes, zeolite membranes, silica template and metal oxide silica membranes, TFC membranes, silica membranes, and metal organic framework (MOF) membranes. Zeolite membranes are also considered for organic solvent applications, as are solvent-resistant membranes manufactured by phase inversion, ceramic-supported composite membranes, and ceramic NF membranes. The emerging areas of membranes for energy and biomedical applications have 3 and 2 chapters, respectively. Energy applications consider ion exchange membranes for use in fuel cells, membranes for electrodialysis, and membranes for use in microbial fuel cells. For biomedical applications the chapters focus on hemodialysis membranes and redox responsive membranes.
This book discusses flow perturbation method, namely, the stopped-flow technique and the reversed-flow technique. It is directed to those who need an accurate method for the determination of a certain physicochemical quantity and to researchers working on the development of gas chromatography.
This book describes the various aspects of microbore column chromatography. It provides readers with an in-depth understanding of the supercritical fluid chromatography and microbore high-performance liquid chromatography.
There is a dramatic rise of novel drug use due to the increased popularity of so-called designer drugs. These synthetic drugs can be illegal in some countries, but legal in others and novel compounds unknown to drug chemistry emerge monthly. This thoughtfully constructed edited reference presents the main chromatographic methodologies and strategies used to discover and analyze novel designer drugs contained in diverse biological materials. The methods are based on molecular characteristics of the drugs belonging to each individual class of compounds, so it will be clear how the current methods are adaptable to future new drugs that appear in the market.
HPLC is the principal separation technique for identification of the pesticides in environmental samples and for quantitative analysis of analytes. At each stage of the HPLC procedure, the chromatographer should possess both the practical and theoretical skills required to perform HPLC experiments correctly and to obtain reliable, repeatable, and reproducible results. Developed to serve as a detailed practical guide, High Performance Liquid Chromatography in Pesticide Residue Analysis is a comprehensive source of information and training on state-of-the-art pesticide residue methods performed with the aid of HPLC. The book presents the pros and cons of HPLC as a flexible and versatile separation and analysis tool with multiple purposes and advantages in investigations of pesticides for food and plant drugs standardization, promotion of health, protection of new herbal medicines, and more.
Chemometrics uses advanced mathematical and statistical algorithms to provide maximum chemical information by analyzing chemical data, and obtain knowledge of chemical systems. Chemometrics significantly extends the possibilities of chromatography and with the technological advances of the personal computer and continuous development of open-source software, many laboratories are interested in incorporating chemometrics into their chromatographic methods. This book is an up-to-date reference that presents the most important information about each area of chemometrics used in chromatography, demonstrating its effective use when applied to a chromatographic separation.
Membrane technologies play an increasingly important role in unit operations for resource recovery, pollution prevention, and energy production, as well as environmental monitoring and quality control. They are also key component technologies of fuel cells and bioseparation applications. Membrane Technologies and Applications provides essential data and background information on various dimensions of membrane technologies, with a major focus on their practical application. Membranes of inorganic materials offer cost-effective solutions for simple to complex separation problems. This book is designed for anyone interested in water and wastewater treatment, membrane suppliers, as well as students and academics studying the field.
Thin layer chromatography (TLC) is increasingly used in the fields of plant chemistry, biochemistry, and molecular biology. Advantages such as speed, versatility, and low cost make it one of the leading techniques used for locating and analyzing bioactive components in plants. Thin Layer Chromatography in Phytochemistry is the first source devoted to supplying state-of-the-art information on TLC as it applies to the separation, identification, quantification, and isolation of medicinal plant components. Renowned scientists working with laboratories around the world demonstrate the applicability of TLC to a remarkable diversity of fields including plant genetics, drug discovery, nutraceuticals, and toxicology. Elucidates the role of plant materials in the pharmaceutical industry... Part I provides a practical review of techniques, relevant materials, and the particular demands for using TLC in phytochemical applications. The text explains how to determine the biological activity of metabolites and assess the effectiveness of herbal medicines and nutritional supplements. Part II concentrates on TLC methods used to analyze specific plant-based metabolite classes such as carbohydrates, proteins, alkaloids, flavonoids, terpenes, etc. Organized by compound type, each chapter discusses key topics such as sample preparation, plate development, zone detection, densitometry, and biodetection. Demonstrates practical methods that can be applied to a wide range of disciplines... From identification to commercial scale production and quality control, Thin Layer Chromatography in Phytochemistry is an essential bench-top companion and reference on using TLC for the study of plant-based bioactive compounds.
Enhanced concern for the quality and safety of food products, increased preference for natural products, and stricter regulations on the residual level of solvents, all contribute to the growing use of supercritical fluid technology as a primary alternative for the extraction, fractionation, and isolation of active ingredients. As a solvent-free process, supercritical fluid technology is a popular answer for the functional foods and nutraceutical sector, one of the fastest growing consumer driven markets. Recent advancements in the technology and increased utilization of the process demand a comprehensive, single-source review of current and future trends in supercritical fluid technology. Compiling contributions from international experts in the field, Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds presents the state-of-the-science in the extraction and fractionation of bioactive ingredients by supercritical fluids. Focusing on implemented industrial processes and trends, it reviews the fundamentals of the technology and examines the economics of supercritical fluid extraction systems and processes. Over the course of twelve chapters, the book presents the supercritical fluid extraction processes in edible oils, including fish oils and specialty oils; herbs, such as Latin American plants and those used in Traditional Chinese Medicine; algae; spices; antioxidants and essential oils; as well as the processing of micro and nano-scale materials by supercritical fluid technology. Each chapter covers the major active components in the target material, including chemical, physical, nutritional, and pharmaceutical properties; an analysis of the specific supercritical fluid process used; a comparison of traditional processing methods versus supercritical fluid technology; and a set of conclusions with supporting data and insight.
A constructive evaluation of the most significant developments in liquid chromatography-mass spectrometry (LC-MS) and its uses for quantitative bioanalysis and characterization for a diverse range of disciplines, Liquid Chromatography-Mass Spectrometry, Third Edition offers a well-rounded coverage of the latest technological developments and applications. As the technology itself has matured into a reliable analytical method over the last 15 years, the most exciting developments occur in LC-MS augments research into new applications. This edition places a stronger emphasis than previous editions on the impact of LC-MS methods, dedicating two-thirds of the text to small-molecule and biomolecular applications such as proteomics, pharmaceutical drug discovery and development, biochemistry, clinical analysis, environmental studies, and natural products research. Supported by the most relevant literature available, each chapter examines how the strategies, technologies, and recent advances-from sample pretreatment to data processing-in LC-MS helped to shape these disciplines. Featuring new chapters and extensive revisions throughout the book, Liquid Chromatography-Mass Spectrometry, Third Edition continues to provide scientists with a definitive guide and reference to the most important principles, strategies, and experimental precedents for applying LC-MS to their research.
The biopharmaceutical industry has become an increasingly important player in the global economy, and the success of these products depends on the development and implementation of cost-effective, robust and scaleable production processes. Bioseparations-also called downstream processing- can be a key source of competitive advantageto biopharmaceutical developers. Process Scale Bioseparations for the Biopharmaceutical Industry brings together scientific principles, empirical approaches, and practical considerations for designing industrial downstream bioprocesses for various classes of biomolecules. Using clear language along with numerous case studies, examples, tables, flow charts, and schematics, the book presents perspectives from experienced professionals involved in purification processes and industrial downstream unit operations. The authors provide useful experimental design strategies and guidelines for developing application-specific process scale bioseparations. Chapter topics include harvest by centrifugation and filtration, expanded bed chromatography, protein refolding, modes of preparative chromatography, methodologies for resin screening, membrane chromatography, protein crystallization, viral filtration, ultrafiltration/diafiltration, implementing post-approval downstream process changes for an antibody product, and future trends. Ideal for both new and experienced scientists in the biopharmaceutical industry and students, Process Scale Bioseparations for the Biopharmaceutical Industry is a comprehensive resource for all topics relevant to industrial process development.
Preparative Layer Chromatography explains how this method is used for separating large quantities of mixtures containing a wide variety of important compounds. It offers a broad review of preparative layer chromatography (PLC) applications and adaptable working procedures for microseparations involving organic, inorganic, and organometallic compounds. The book contains theoretical background, chemical principles, and relevance of preparative layer chromatography (PLC) to a wide range of applications, particularly in the study of pharmaceuticals and biochemistry. Written by many of the best known and most knowledgeable specialists in the field, the chapters describe all the necessary techniques, current procedures, and superior strategies for selecting the most suitable eluents and designing application-specific PLC systems based on the data being sought. They provide comprehensive instructions, surrounding issues, and suggestions for optimizing optional working techniques within the framework of PLC. The book also provides a complete coverage of bulk sorbents and precoated chromatographic plates available on the international market. A comprehensive, yet accessible source of information, Preparative Layer Chromatography is a relevant and practical text for experienced as well as novice researchers and practitioners involved in analytical, environmental, geochemical, biological, medicinal, and pharmaceutical analysis. |
You may like...
Career Counselling And Guidance In The…
Melinda Coetzee, Herman Roythorne-Jacobs, …
Paperback
Quasiconformal Mappings and Analysis - A…
Peter Duren, Juha Heinonen, …
Hardcover
R2,862
Discovery Miles 28 620
The Business of Employee Empowerment…
Thomas Potterfield
Hardcover
Choosing Effective Development Programs…
James E. Gardner
Hardcover
Labour Relations In Practice - A…
Sonia Bendix, Eloise Abrahams
Paperback
|