![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Biology, life sciences > Developmental biology
International Review of Cell and Molecular Biology, Volume 354 reviews and details current advances in cell and molecular biology. The IRCMB series has a worldwide readership, maintaining a high standard by publishing invited articles on important and timely topics that are authored by prominent cell and molecular biologists. Sections in this new release include P73 in health and disease, The biology of LONP1, Molecular mechanisms of selective autophagy in Drosophila, Metabolic reprogramming and cisplatin resistance, The biology of polycystin 2, Pharmacological methods to transcriptionally modulate double-strand break DNA repair, Evolutionary insights into the aphid genome, Stratifying nutritional interventions in cancer therapy: next stop, personalized medicine, Vascular calcifications in health and disease
Cell-Derived Matrices Part B, Volume 157 provides a detailed description and step-by-step methods surrounding the use of three-dimensional cell-derived matrices for tissue engineering applications. Chapters in this new release include Glaucomatous cell-derived matrices, Cardiac tissue explants decellularization, Decellularization of skin matrices for wound healing applications, Guiding axonal growth by aligned cell-derived matrices for spinal cord injury regeneration, Human Mesenchymal Stem Cell-Derived Matrices for Enhanced Osteoregeneration, Amniotic decellularized matrices, Three-Dimensional (3-D) Tissue Reconstruction without Scaffold, Tubular cell-derived matrices for TERM applications, and more.
Cell Death Regulation in Health and Disease - Part B, Volume 352, the latest release in the International Review of Cell and Molecular Biology, reviews and details current advances in cell and molecular biology. Chapters in this updated release include Regulation of cell death signaling in insects, Bcl-2 family proteins, Cell death signaling in prokaryotes, Parthanatos in neurodegenerative diseases, Cell death regulation in yeast, Mutual regulation of autophagy and necroptosis, Therapeutic inhibition of cell death by autophagy induction, and Necroptosis in neurodegenerative diseases.
From the cells of aquatic algae to the majestic redwoods towering
100 metres above the California coast, the history of plant
evolution has been one of increasing complexity. The underlying
rationale for this book is to answer the question: How, when land
plant embryos at a few-celled stage are essentially comparable, do
plants achieve such radically different adult phenotypes, from
mosses to tree-ferns, and grasses to oak trees?
Animal phylogeny is undergoing a major revolution due to the
availability of an exponentially increasing amount of molecular
data and the application of novel methods of phylogentic
reconstruction, as well as the many spectacular advances in
palaeontology and molecular developmental biology. Traditional
views of the relationships among major phyla have been shaken and
new, often unexpected, relationships are now being considered. At
the same tiem, the emerging discipline of evolutionary
developmental biology, or 'evo-devo', has offered new insights into
the origin and evolvability of major traits of animal architecture
and life cycle. All these developments call for a revised
interpretation of the pathways along which animal structure and
development has evolved since the origin of the Metazoa.
This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. In the past, it was a common requirement to have domain experts for developing models for biomedical or healthcare. However, recent advances in representation learning algorithms allow us to automatically learn the pattern and representation of the given data for the development of such models. Medical Image Mining, a novel research area (due to its large amount of medical images) are increasingly generated and stored digitally. These images are mainly in the form of: computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new and useful information that can be helpful for scientists and biomedical practitioners. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence..
The polyphyletic Protozoa have explored the possibility of performing almost all metazoan functions with a few subcellular organelles. Their unicellularity and structural simplicity have (i) limited diversity to 32,950 species, (ii) restricted spatial distribution to aquatic habitats (94%, against 15% in Metazoa), (iii) demonstrated the ubiquitous dominance of clonality, (iv) reduced sexualization in 50% species, (v) facilitated the use of vegetative gametes in 40% species and (vi) secondary loss of sex in 10% species. With the fastest multiplication rates, i.e. once every 6-60 hours, they occur in high densities of 105-106 cell/ml. Their diverse and complicated life cycles are described in 30 types. Being risky, the cycle involves two hosts in < 2,000 parasitic species and injective transmission mode by sanguivorous insects and ticks in < 300 species. Their radial symmetry has accelerated diversity more than in radially symmetric less speciose Porifera (8,553 species), Cnidaria (10,856) and Echinodermata (7,000). In them, diversity is decelerated in the following descending order: symmetry > clonality > hermaphroditism > motility. Motility ranges from 2-3 m for Rhizopoda to 400-2,000 m for Ciliophora. Not surprisingly, 6,800 species of arcellinids, filosians and formainifers are testated or shelled. Within 1,229 sessile species, the peritrichid and suctorian ciliates are better adapted to coloniality. Unlike those of many Metazoa, the protozoan cyst is a dynamic stage, in which clonal or sexual reproduction occurs. Over 81% protozoans encyst, as it ensures (i) 90% survival during unfavorable conditions (against 15 in 12% non-encysted protozoans), (ii) genome transfer through generations, (iii) dispersal into new habitats and (iv) transmission to new hosts. Their mean body size ranges from 2 m to 2 mm - a range over 1,000-times - only 8% aquatic metazoans cover a similar size range. In comparison to 77% macrophagy in Metazoa, only 46% protozoans are macrophagous predators. Within motile microphagy, protozoans filter 3-2 times smaller food particle at 50% cheaper clearance cost. This efficiency has expanded microphagy to 15% in protozoans, against 3% in Metazoa. Hence, their turnover rate in trophic dynamics is twice faster than that of metazoans. Foraminifers serve as ecological sensitive indicators in petroleum exploration and rise in sea level. For the first time, incidences of clonality and meiosis as well as symbiosis and parasitism have been shown to hint at the origin and evolution of different protozoan taxonomic groups during the geological past.
Cell-Derived Matrices, Part A, Volume 156, provides a detailed description and step-by-step methods surrounding the use of three-dimensional cell-derived matrices for tissue engineering applications. Biochemical, biophysical and cell biological approaches are presented, along with sample results. Specific chapters cover Anisotropic cell-derived matrices with controlled 3D architecture, Generation of functional fluorescently-labelled cell-derived matrices by means of genetically-modified fibroblasts, Bi-layered cell-derived matrices, Engineering clinically-relevant cell-derived matrices using primary fibroblasts, Decellularized matrices for bioprinting applications, and much more.
Cell Death Regulation in Health and Disease - Part A, Volume 351, the latest release in the International Review of Cell and Molecular Biology reviews current advances in cell and molecular biology. The series publishes timely topics authored by prominent cell and molecular biologists. This release is part of a 3-part series which comprises a comprehensive view of cell death regulation in a variety of biological contexts. Chapters cover Membrane dynamics in cell death regulation, The role of necroptosis in intestinal dysfunction, Regulation of cell death in the cardiovascular system, Cell death in bacterial and viral infection, and much more.
Microbes are ubiquitous in nature. Among microbes, fungal communities play an important role in agriculture, the environment, and medicine. Vast fungal diversity has been associated with plant systems, namely epiphytic fungi, endophytic fungi, and rhizospheric fungi. These fungi associated with plant systems play an important role in plant growth, crop yield, and soil health. Rhizospheric fungi, present in rhizospheric zones, get their nutrients from root exudates released by plant root systems, which help with their growth, development, and microbe activity. Endophytic fungi typically enter plant hosts through naturally occurring wounds that are the result of plant growth, through root hairs, or at epidermal conjunctions. Phyllospheric fungi may survive or proliferate on leaves depending on material influences in leaf diffuseness or exudates. The diverse nature of these fungal communities is a key component of soil-plant systems, where they are engaged in a network of interactions endophytically, phyllospherically, as well as in the rhizosphere, and thus have emerged as a promising tool for sustainable agriculture. These fungal communities promote plant growth directly and indirectly by using plant growth promoting (PGP) attributes. These PGP fungi can be used as biofertilizers and biocontrol agents in place of chemical fertilizers and pesticides for a more eco-friendly method of promoting sustainable agriculture and environments. This first volume of a two-volume set covers the biodiversity of plant-associated fungal communities and their role in plant growth promotion, the mitigation of abiotic stress, and soil fertility for sustainable agriculture. This book should be useful to those working in the biological sciences, especially for microbiologists, microbial biotechnologists, biochemists, and researchers and scientists of fungal biotechnology.
International Review of Cell and Molecular Biology, Volume 350, covers all aspects of endoplasmic reticulum (ER) biology. With its multiple cellular functions, including ion storage as well protein folding, trafficking and secretion, the regulation of homeostasis within the ER is crucial to organismal health. New sections in this updated volume include DAMP emission upon ER stress, Protein misfolding disordersm Type I interferon response and ER stress, ER and autophagosome biogenesis, Mitochondria-associated membranes, ER calcium signaling in excitable cells, and ER in viral infections.
Gradients and Tissue Patterning, Volume 137 in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors.
The mouse is a perfect model organism to study mammalian, and thus indirectly also human, embryology. Most scientific achievements that have had an important impact on the understanding of basic mechanisms governing embryo development in humans, originated from mouse embryology. Stem cell research, which now offers the promise of regenerative medicine, began with the isolation and culture of mouse embryonic stem cells by Martin Evans (who received the Nobel Prize in medicine in 2007 for this achievement) and Matthew Kaufman. This book provides an overview of mouse development, spanning from oocytes before fertilization to the state-of-the-art description of embryonic and adult stem cells. The chapters, written by the leading specialists in the field, deal with the most recent discoveries in this extremely fast-developing area of research.
Key features: Organised and centred around analysis techniques, not traditional Mechanics and E&M. Presents a unified approach, in a different order, meaning that the same laboratories, equipment, and demonstrations can be used when teaching the course. Demonstrates to students that the analysis and concepts they are learning are critical to the understanding of biological systems.
An understanding of gonorynchiform morphology and systematic inter- and intra-relationships has proven vital to a better understanding of the evolution of lower teleosts in general, and more specifically of groups such as the clupeiforms (e.g., herrings and anchovies), and ostariophysans (e.g., carps, minnows and catfishes). This book examines the current knowledge of gonorynchiform biology, including comparative osteology, myology, epibranchial morphology and development. Phylogenetic interrelationships among gonorynchiform fishes are reexamined.
In this unique book emphasis is placed on tests necessary to evaluate fetal well-being and to detect those fetuses at risk of hypoxia and acidosis in utero. Written by pioneers in the neonatal field, this publication contains chapters on the pathophysiology , obstetric management, and collagen diseases of intrauterine growth retardation. Ultrasound in detection of growth retarded fetuses is explored, as well as magnetic resonance imaging and magnesium substitution for the prevention of intrauterine growth retardation. Containing never-before-published information, this volume is an excellent reference source for both investigators in the field and those entering it. Topics Include: Perinatal growth chart for international reference Ultrasound guided procedures in small for gestation fetuses Utero-placental and fetal circulation
1) Classic anatomical atlases 2) Detailed labeling of the earliest phases of prenatal neurological development 3) Appeals to neuroanatomists, developmental biologists and clinical practitioners. 4) Persistent relevance - brain development is not going to change
Immunobiology of Dendritic Cells Part B, Volume 349 in the International Review of Cell and Molecular Biology series highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Encyclopedia of Tissue Engineering and Regenerative Medicine, Three Volume Set provides a comprehensive collection of personal overviews on the latest developments and likely future directions in the field. By providing concise expositions on a broad range of topics, this encyclopedia is an excellent resource. Tissue engineering and regenerative medicine are relatively new fields still in their early stages of development, yet they already show great promise. This encyclopedia brings together foundational content and hot topics in both disciplines into a comprehensive resource, allowing deeper interdisciplinary research and conclusions to be drawn from two increasingly connected areas of biomedicine.
Cellular Nutrient Utilization and Cancer, Volume 347 in the International Review of Cell and Molecular Biology (IRCMB) series maintains a high standard by publishing invited articles on timely topics that are authored by prominent cell and molecular biologists. Sections in this new release include Sulfur metabolism and cancer, The interplay of genetic drivers of cancer and cellular nutrients to support oncogenesis, The diet's impact on nutrient availability for cancer cells, Nutrients as determinants of redox balance in cancer, The role of dietary lipids in colon cancer pathogenesis, The influence of diet on nutrient utilization by cancer cells and immune-surveillance, and more.
Advances in Stem Cells and Their Niches, Volume Three, comprises a compilation of the latest findings on our understanding of skin biology. It extends the current knowledge on skin stem cells and provides in-depth discussions on their unique settings, niches and properties. Chapters in this new release include The biophysical regulation of epidermal fate and function, Epidermal stem cell lineages, Hair shaft progenitors that create a niche for hair pigmentation, Dermal papilla cells control of hair follicle growth and pigmentation, Molecular mechanisms regulating the hair follicle niche, Dermal fibroblasts and their niches and interactions with epidermal stem cells.
This book highlights the potential advantages of using marine invertebrates like tunicates, echinoderms, sponges and cephalopods as models in both biological and medical research. Bioactive compounds found in marine organisms possess antibacterial, antifungal, anti-diabetic and anti-inflammatory properties, and can affect the immune and nervous systems. Despite substantial research on the medicinal attributes of various marine invertebrates, they are still very much underrepresented in scientific literature: the majority of cell, developmental and evolutionary scientific journals only publish research conducted on a few well-known model systems like Drosophila melanogaster or Xenopus laevis. Addressing that gap, this book introduces readers to new model organisms like starfish or nemertera. By showing their benefits with regard to regeneration, stem cell research and Evo-Devo, the authors provide a cross-sectional view encompassing various disciplines of biological research. As such, this book will not only appeal to scientists currently working on marine organisms, but will also inspire future generations to pursue research of their own.
This book provides a state-of-the-art compendium on the role of proteoglycans and glycosaminoglycans during development and in cancer. It also suggests directions for novel therapeutic and biotechnological applications in stem cell biology. Proteoglycans and glycosaminoglycans, as part of the extracellular matrix, are multifunctional modulators of growth factor, cytokine, integrin and morphogen signaling, which determine both self-renewal, senescence and/or differentiation of stem cells during development. Since proteoglycans modulate cell adhesion and migration they are important organizers of the extracellular matrix within the proper stem cell niche. A malfunctioning of proteoglycans and glycosaminoglycans contributes to the cancer stem cell phenotype, which is linked to therapeutic resistance and recurrence in malignant disease. This book is essential reading for anyone interested in the extracellular matrix and its role in development. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
Exposure to space flight has been shown to results in changes in
many physiological systems, including the musculoskeletal system,
the cardiovascular system, the immune system, and the
neurovestibular system. These changes could negatively impact the
ability of humans to undertake long-term habitation and exploration
of space. However, there are limits to the studies that can be done
with humans in space. Both ground-based and space flight animal
model systems are currently used for these studies as an
alternative. This volume covers the latest developments in the use
of animal models to study the effects of the space flight
environment on human physiological systems.
This volume focuses on the ethnobiology of southern Chile's Archipelago of Chiloe. Chiloe presents a unique perspective on the intersection of society and biology owing to its vast natural resources, historic culture of cooperation, geographic isolation, and external resource exploitation. Contributions to this volume cover knowledge bases in both marine and terrestrial systems, and how specific local knowledge types contributed to a variety of strategies, including subsistence, social-ecological resilience, resource conservation, cultural heritage preservation, economic systems, and mitigating uncertainty. This book addresses the specificities of human-environment interaction on a resource-rich island, and how historic knowledge and practices can help configure adaptation to a changing social-ecological landscape. |
You may like...
When Adoptions Go Wrong - Psychological…
Lita Linzer Schwartz
Hardcover
R1,381
Discovery Miles 13 810
Russia's Abandoned Children - An…
Clementine K Fujimura, Sally W. Stoecker, …
Hardcover
R1,926
Discovery Miles 19 260
Triangulated Categories of Mixed Motives
Denis-Charles Cisinski, Frederic Deglise
Hardcover
R3,174
Discovery Miles 31 740
|