![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Electronics & communications engineering
Bioelectromagnetics in Healthcare: Advanced sensing and communication applications is a collection of twelve invited chapters from international experts from the UK, Japan, Switzerland, and the United States of America. The book forms a cohesive architecture that covers the state-of-the-art in terms of sensing and communications with relevance to bioelectromagnetics in healthcare. The book provides a valuable insight into the current and future possibilities where electromagnetics engineers will need to keep improving radiofrequency device performance in terms of better efficiency, greater sensitivity, reduced unintended power absorption by the body, smaller size, and lower power consumption. Topics covered include dielectric measurements, dosimetry for bioelectromagnetics, phantom recipes for implanted and wearable antenna applications, antennas for implants, electromagnetic coupling in biological media, electromagnetic resonators and metamaterials-based structures for chemical and biological sensing in body-centric wireless applications, bone fracture monitoring using implanted antennas, wearable antennas for sensing, epidermal and conformal electronics, radar for healthcare technology, therapeutic applications of electromagnetic waves, and optoelectronic sensing of physiological monitoring. The book is aimed at electromagnetics engineers and advanced students in electromagnetics working on healthcare and medical applications.
Estimation and Control of Large Scale Networked Systems is the first book that systematically summarizes results on large-scale networked systems. In addition, the book also summarizes the most recent results on structure identification of a networked system, attack identification and prevention. Readers will find the necessary mathematical knowledge for studying large-scale networked systems, as well as a systematic description of the current status of this field, the features of these systems, difficulties in dealing with state estimation and controller design, and major achievements. Numerical examples in chapters provide strong application backgrounds and/or are abstracted from actual engineering problems, such as gene regulation networks and electricity power systems. This book is an ideal resource for researchers in the field of systems and control engineering.
Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications.
Encyclopedia of Materials: Electronics, Three Volume Set provides a compilation on all aspects of electronic materials and devices, i.e., their science, engineering and technology. As electronic materials are integrated into numerous devices and widely used in almost all sectors, including information and communication technology, automation and control, robotics, manufacturing, process industries, instrumentation, energy and power systems, healthcare, and defense and security, this book is an ideal reference. This area of science will play an influential role in the future. In addition, given the rapid expansion of publications in this field, the compilation of definitive reviews of this kind is especially important and invaluable. The study of electronic materials is truly multidisciplinary, therefore the contributors to, and the audience for, this work will be from the fields of materials science, engineering, physics and chemistry. This title will provide users with a single and unique reference source for fundamental and applied research in electronic materials, incorporating elements from many different disciplines and applications. The work will be an invaluable resource for libraries in universities, research organizations, and manufacturing and technology companies.
Body as Instrument explores how musicians interact with movement-controlled performance systems, producing sounds imbued with their individual physical signature. Using motion tracking technology, performers can translate physical actions into sonic processes, creating or adapting novel gestural systems that transcend the structures and constraints of conventional musical instruments. Interviews with influential artists in the field, Laetitia Sonami, Atau Tanaka, Pamela Z, Julie Wilson-Bokowiec, Lauren Sarah Hayes, Mark Coniglio, Garth Paine and The Bent Leather Band expose the transformational impact of motion sensors on musicians' body awareness and abilities. Coupled with reflection on author-composed works, the book analyses how the body as instrument metaphor informs relationships between performers, their bodies and self-designed instruments. It also examines the role of experiential design strategies in developing robust and nuanced gestural systems that mirror a performer's movement habits, preferences and skills, inspiring new physical forms of musical communication and diverse musical repertoire.
There is no doubt that we are facing a wireless data explosion. Modern wireless networks need to satisfy increasing demand, but are faced with challenges such as limited spectrum, expensive resources, green communication requirements and security issues. In the age of internet of things (IoT) with massive data transfers and huge numbers of connected devices, including high-demand QoS (4G, 5G networks and beyond), signal processing is producing data sets at the gigabyte and terabyte scales. Modest-sized optimisation problems can be handled by online algorithms with fast speed processing and a huge amount of computer memory. With the rapid increase in powerful computers, more efficient algorithms and advanced parallel computing promise an enormous reduction in calculation time, solving modern optimisation problems on strict deadlines at microsecond or millisecond time scales. Finally, the interplay between machine learning and optimisation is an efficient and practical approach to optimisation in real-time applications. Real-time optimisation is becoming a reality in signal processing and wireless networks. This book considers advanced real-time optimisation methods for 5G and beyond networks. The authors discuss the fundamentals, technologies, practical questions and challenges around real-time optimisation of 5G and beyond communications, providing insights into relevant theories, models and techniques. The book should benefit a wide audience of researchers, practitioners, scientists, professors and advanced students in engineering, computer science, ubiquitous computing, information technology, and networking and communications engineering, as well as professionals in government agencies.
There is not a single industry which will not be transformed by machine learning and Internet of Things (IoT). IoT and machine learning have altogether changed the technological scenario by letting the user monitor and control things based on the prediction made by machine learning algorithms. There has been substantial progress in the usage of platforms, technologies and applications that are based on these technologies. These breakthrough technologies affect not just the software perspective of the industry, but they cut across areas like smart cities, smart healthcare, smart retail, smart monitoring, control, and others. Because of these "game changers," governments, along with top companies around the world, are investing heavily in its research and development. Keeping pace with the latest trends, endless research, and new developments is paramount to innovate systems that are not only user-friendly but also speak to the growing needs and demands of society. This volume is focused on saving energy at different levels of design and automation including the concept of machine learning automation and prediction modeling. It also deals with the design and analysis for IoT-enabled systems including energy saving aspects at different level of operation. The editors and contributors also cover the fundamental concepts of IoT and machine learning, including the latest research, technological developments, and practical applications. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of IoT and machine technology, this is a must-have for any library.
Power Electronics Device Applications of Diamond Semiconductors presents state-of-the-art research on diamond growth, doping, device processing, theoretical modeling and device performance. The book begins with a comprehensive and close examination of diamond crystal growth from the vapor phase for epitaxial diamond and wafer preparation. It looks at single crystal vapor deposition (CVD) growth sectors and defect control, ultra high purity SC-CVD, SC diamond wafer CVD, heteroepitaxy on Ir/MqO and needle-induced large area growth, also discussing the latest doping and semiconductor characterization methods, fundamental material properties and device physics. The book concludes with a discussion of circuits and applications, featuring the switching behavior of diamond devices and applications, high frequency and high temperature operation, and potential applications of diamond semiconductors for high voltage devices.
This book is a comprehensive collection and practical guide on robotics derived from the author's research in robotics since 1988. The Chinese edition of this book has sold over 300,000 copies, and is one of the best-selling books on robotics in China.The book covers the core technology of robotics, including the basic theories and techniques of robot manipulator, mobile robots to focus on location navigation, and intelligent control underpinned by artificial intelligence and deep learning. Several case studies from national research projects in China are also included to help readers understand the theoretical foundations of robotics and related application developments. This book is a valuable reference for undergraduate and graduate students of robotics courses.
As a popular and powerful medium, mobile use has increased significantly across the world. The effects of these communication devices have not only transformed how we communicate but also how we gather and distribute information in a variety of industries including healthcare, business, and education. Impacts of Mobile Use and Experience on Contemporary Society provides cross-disciplinary research that examines mobile use and its impact through 16 different stages of life, ranging from pre-birth through after-death. Featuring research on topics such as academic application, economic value, and mobile learning, scholars from different disciplines identify the crucial implications behind one of the leading communication tools from all over the world. Included amongst the targeted audience are educators, policymakers, healthcare professionals, managers, academicians, researchers, and practitioners.
For undergraduate electrical engineering students or for practicing engineers and scientists interested in updating their understanding of modern electronics One of the most widely used introductory books on semiconductor materials, physics, devices and technology, Solid State Electronic Devices aims to: 1) develop basic semiconductor physics concepts, so students can better understand current and future devices; and 2) provide a sound understanding of current semiconductor devices and technology, so that their applications to electronic and optoelectronic circuits and systems can be appreciated. Students are brought to a level of understanding that will enable them to read much of the current literature on new devices and applications. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Provide a Sound Understanding of Current Semiconductor Devices: With this background, students will be able to see how their applications to electronic and optoelectronic circuits and systems are meaningful.*Incorporate the Basics of Semiconductor Materials and Conduction Processes in Solids: Most of the commonly used semiconductor terms and concepts are introduced and related to a broad range of devices. *Develop Basic Semiconductor Physics Concepts: With this background, students will be better able to understand current and future devices.
Developments in Antenna Analysis and Design presents recent developments in antenna design and modeling techniques for a wide variety of applications, chosen because they are contemporary in nature, have been receiving considerable attention in recent years, and are crucial for future developments. It includes topics such as body-worn antennas, that play an important role as sensors for Internet of Things (IoT), and millimeter wave antennas that are vitally important for 5G devices. It also covers a wide frequency range that includes terahertz and optical frequencies. Additionally, it discusses topics such as theoretical bounds of antennas and aspects of statistical analysis that are not readily found in the existing literature. This first volume covers the theory of characteristic modes (TCM) and characteristic bases; wideband antenna element designs; MIMO antennas; antennas for wireless communication; reconfigurable antennas employing microfluidics; flexible and body-worn antennas; and antennas using meta-atoms and artificially-engineered materials, or metamaterials (MTMs). A second volume covers the topics of: graphene-based antennas; millimeter-wave antennas; terahertz antennas; optical antennas; fundamental bounds of antennas; fast and numerically efficient techniques for analyzing antennas; statistical analysis of antennas; ultra-wideband arrays; reflectarrays; and antennas for small satellites, viz., CubeSats. The two volumes represent a unique combination of topics pertaining to antenna design and analysis, not found elsewhere. It is essential reading for the antenna community including designers, students, researchers, faculty engaged in teaching and research of antennas, and the users as well as decision makers.
Recently, a new digital twin consortium has been established that aims to deploy digital twin technology in new markets as well as in the development of smart cities. Designing smart cities, smart communities, and smart ecosystems powered by optimal digital twin deployments is a vision that currently only futurists can entertain and requires some time to reach large-scale adoption. However, it is incumbent upon us as a society to educate and train future generations on how to leverage digital twin technologies in order to optimize our daily lives as well as increase our efficiency, productivity, and safety. Impact of Digital Twins in Smart Cities Development provides insights regarding the global landscape for current digital twin research and deployments and highlights some of the challenges and opportunities faced during large-scale adoptions. Critical domains such as ethics, data governance, cybersecurity, inclusion, diversity, and sustainability are also addressed and considered. Covering topics such as digital identity and digital economics, this reference work is ideal for urban planners, engineers, policymakers, industry leaders, scientists, economists, academicians, practitioners, researchers, instructors, and students.
Biomimetic research is an emerging field that aims to draw inspiration and substances from natural sources and create biological systems in structure, mechanism, and function through robotics. The products have a wide array of application including surgical robots, prosthetics, neurosurgery, and biomedical image analysis. The Handbook of Research on Biomimetics and Biomedical Robotics provides emerging research on robotics, mechatronics, and the application of biomimetric design. While highlighting mechatronical challenges in today's society, readers will find new opportunities and innovations in design capabilities in intelligent robotics and interdisciplinary biomedical products. This publication is a vital resource for senior and graduate students, researchers, and scientists in engineering seeking current research on best ways to globally expand online higher education.
This book focuses on transmission systems for pure electric and hybrid vehicles. It first discusses system development and optimization technologies, comprehensively and systematically describing the development trends, structures and technical characteristics, as well as the related technologies and methods. It highlights the principles, implementation process and energy management of the power transmission system based on the pure electric and hybrid mode management method, and examines the reliability and NVH characteristic tests and optimization technologies. Combining research theory and engineering practice, the book is a valuable reference resource for engineering and technical professionals in the field of automobile and related power transmission machinery as well as undergraduate and graduate students.
Since the initial predictions for the existence of Weyl fermions in condensed matter, many different experimental techniques have confirmed the existence of Weyl semimetals. Among these techniques, optical responses have shown a variety of effects associated with the existence of Weyl fermions. In chiral crystals, we find a new type of fermions protected by crystal symmetries — the chiral multifold fermions — that can be understood as a higher-spin generalization of Weyl fermions. This work provides a complete description of all chiral multifold fermions, studying their topological properties and the k·p models describing them. We compute the optical conductivity of all chiral multifold fermions and establish their optical selection rules. We find that the activation frequencies are different for each type of multifold fermion, thus constituting an experimental fingerprint for each type of multifold fermion. Building on the theoretical results obtained in the first part of our analysis, we study two chiral multifold semimetals: RhSi and CoSi. We analyze the experimental results with k·p and tight-binding models based on the crystal symmetries of the material. We trace back the features observed in the experimental optical conductivity to the existence of multifold fermions near the Fermi level and estimate the chemical potential and the scattering lifetime in both materials. Finally, we provide an overview of second-order optical responses and study the second-harmonic generation of RhSi. We find a sizeable second-harmonic response in the low-energy regime associated with optical transitions between topological bands. However, this regime is extremely challenging to access with the current experimental techniques. We conclude by providing an overview of the main results, highlighting potential avenues to further research on chiral multifold semimetals and the future of optical responses as experimental probes to characterize topological phases.
|
![]() ![]() You may like...
Proceedings of International Conference…
Peddada Jagadeeswara Rao, Kakani Nageswara Rao, …
Hardcover
R5,783
Discovery Miles 57 830
Advancing Geoinformation Science for a…
Stan Geertman, Wolfgang Reinhardt, …
Hardcover
R5,679
Discovery Miles 56 790
Microwave Radiometry and Remote Sensing…
Pampaloni, Paloscia
Hardcover
Remote Sensing of Urban and Suburban…
Tarek Rashed, Carsten Jurgens
Hardcover
R2,691
Discovery Miles 26 910
Cloud Computing for Geospatial Big Data…
Himansu Das, Rabindra K. Barik, …
Hardcover
R5,119
Discovery Miles 51 190
Geospatial Data in a Changing World…
Tapani Sarjakoski, Maribel Yasmina Santos, …
Hardcover
R6,853
Discovery Miles 68 530
Advances in Spatial Data Handling - 10th…
Dianne Richardson, Peter Van Oosterom
Hardcover
R5,689
Discovery Miles 56 890
|