![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Electronics & communications engineering > Electronics engineering
Simulate realistic human motion in a virtual world with an
optimization-based approach to motion prediction. With this
approach, motion is governed by human performance measures, such as
speed and energy, which act as objective functions to be optimized.
Constraints on joint torques and angles are imposed quite easily.
Predicting motion in this way allows one to use avatars to study
how and why humans move the way they do, given specific scenarios.
It also enables avatars to react to infinitely many scenarios with
substantial autonomy. With this approach it is possible to predict
dynamic motion without having to integrate equations of motion --
rather than solving equations of motion, this approach solves for a
continuous time-dependent curve characterizing joint variables
(also called joint profiles) for every degree of freedom.
The thesis covers a broad range of electronic, optical and
opto-electronic devices and various predicted physical effects. In
particular, it examines the quantum interference transistor effect
in graphene nanorings; tunable spin-filtering and spin-dependent
negative differential resistance in composite heterostructures
based on graphene and ferromagnetic materials; optical and novel
electro-optical bistability and hysteresis in compound systems and
the real-time control of radiation patterns of optical
nanoantennas. The direction of the main radiation lobe of a regular
plasmonic array can be changed abruptly by small variations in
external control parameters. This optical effect, apart from its
relevance for applications, is a revealing example of the Umklapp
process and, thus, is a visual manifestation of one of the most
fundamental laws of solid state physics: the conservation of the
quasi-momentum to within a reciprocal lattice vector. The thesis
analyzes not only results for particular device designs but also a
variety of advanced numerical methods which are extended by the
author and described in detail. These methods can be used as a
sound starting point for further research.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
In recent years, there has been growing interest in industrial systems, especially in robotic manipulators and mobile robot systems. As the cost of robots goes down and become more compact, the number of industrial applications of robotic systems increases. Moreover, there is need to design industrial systems with intelligence, autonomous decision making capabilities, and self-diagnosing properties. Intelligent Industrial Systems: Modeling, Automation and Adaptive Behavior analyzes current trends in industrial systems design, such as intelligent, industrial, and mobile robotics, complex electromechanical systems, fault diagnosis and avoidance of critical conditions, optimization, and adaptive behavior. This book discusses examples from major areas of research for engineers and researchers, providing an extensive background on robotics and industrial systems with intelligence, autonomy, and adaptive behavior giving emphasis to industrial systems design.
Complete guide to methods, techniques and technologies of model-based engineering design for developing robust electronic systemsGives a toolbox of methods and models to choose from for the task at hand supported by numerous examples of how to put them into practiceShows how to adopt the methods using numerous industrial examples in the context of integrated circuit design In the electronics industry today consumer demand for devices with hyper-connectivity and mobility has resulted in the development of a complete system on a chip (SoC). Using the old rule of thumb design methods of the past is no longer feasible for these new complex electronic systems. To develop highly successful systems that meet the requirements and quality expectations of customers, engineers now need to use a rigorous, model-based approach in their designs. This book provides the definitive guide to the techniques, methods and technologies for electronic systems engineers, embedded systems engineers, and hardware and software engineers to carry out model- based electronic system design, as well as for students of IC systems design. Based on the authors considerable industrial experience, the book shows how to implement the methods in the context of integrated circuit design flows. Complete guide to methods, techniques and technologies of
model-based engineering design for developing robust electronic
systems.Written by world experts in model-based designwho have
considerable industrial experience.Shows how to adopt the methods
using numerous industrial examples in the context of integrated
circuit design.
This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.
Here's a complete and up-to-date introduction to the analysis and design of infrared and electro-optical (EO) imaging systems. This comprehensive reference details the principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems and shows you how to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, engineers and program managers become capable of predicting both sensor test and field performance and quantifying the effects of component variations. "Introduction to Infrared and Electro-Optical Systems" contains over 500 equations.
"Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. Originally widely known as the "Willardson and Beer"
Series, it has succeeded in publishing numerous landmark volumes
and chapters. The series publishes timely, highly relevant volumes
intended for long-term impact and reflecting the truly
interdisciplinary nature of the field. The volumes in
"Semiconductors and Semimetals" have been and will continue to be
of great interest to physicists, chemists, materials scientists,
and device engineers in academia, scientific laboratories and
modern industry.
This thesis provides a systematic and integral answer to an open problem concerning the universality of dynamic fuzzy controllers. It presents a number of novel ideas and approaches to various issues including universal function approximation, universal fuzzy models, universal fuzzy stabilization controllers, and universal fuzzy integral sliding mode controllers. The proposed control design criteria can be conveniently verified using the MATLAB toolbox. Moreover, the thesis provides a new, easy-to-use form of fuzzy variable structure control. Emphasis is given to the point that, in the context of deterministic/stochastic systems in general, the authors are in fact discussing non-affine nonlinear systems using a class of generalized T-S fuzzy models, which offer considerable potential in a wide range of applications.
This Festschrift is in honor of Marilyn Wolf, on the occasion of her 60th birthday. Prof. Wolf is a renowned researcher and educator in Electrical and Computer Engineering, who has made pioneering contributions in all of the major areas in Embedded, Cyber-Physical, and Internet of Things (IoT) Systems. This book provides a timely collection of contributions that cover important topics related to Smart Cameras, Hardware/Software Co-Design, and Multimedia applications. Embedded systems are everywhere; cyber-physical systems enable monitoring and control of complex physical processes with computers; and IoT technology is of increasing relevance in major application areas, including factory automation, and smart cities. Smart cameras and multimedia technologies introduce novel opportunities and challenges in embedded, cyber-physical and IoT applications. Advanced hardware/software co-design methodologies provide valuable concepts and tools for addressing these challenges. The diverse topics of the chapters in this Festschrift help to reflect the great breadth and depth of Marilyn Wolf's contributions in research and education. The chapters have been written by some of Marilyn's closest collaborators and colleagues.
The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also explored experimentally. It collects robotics contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the 14th ISER held on June 15-18, 2014 in Marrakech and Essaouira, Morocco. This present fourteenth edition of Experimental Robotics edited by M. Ani Hsieh, Oussama Khatib, and Vijay Kumar offers a collection of a broad range of topics in field and human-ce ntered robotics.
This thesis addresses selected unsolved problems in the chemical mechanical polishing process (CMP) for integrated circuits using ruthenium (Ru) as a novel barrier layer material. Pursuing a systematic approach to resolve the remaining critical issues in the CMP, it first investigates the tribocorrosion properties and the material removal mechanisms of copper (Cu) and Ru in KIO4-based slurry. The thesis subsequently studies Cu/Ru galvanic corrosion from a new micro and in-situ perspective, and on this basis, seeks ways to mitigate corrosion using different slurry additives. The findings presented here constitute a significant advance in fundamental and technical investigations into the CMP, while also laying the groundwork for future research.
This book contains mainly the selected papers of the First International Workshop on Medical and Service Robots, held in Cluj-Napoca, Romania, in 2012. The high quality of the scientific contributions is the result of a rigorous selection and improvement based on the participants exchange of opinions and extensive peer-review. This process has led to the publishing of the present collection of 16 independent valuable contributions and points of view and not as standard symposium or conference proceedings. The addressed issues are: Computational Kinematics, Mechanism Design, Linkages and Manipulators, Mechanisms for Biomechanics, Mechanics of Robots, Control Issues for Mechanical Systems, Novel Designs, Teaching Methods, all of these being concentrated around robotic systems for medical and service applications. The results are of interest to researchers and professional practitioners as well as to Ph.D. students in the field of mechanical and electrical engineering. This volume marks the start of a subseries entitled New Trends in Medical and Service Robots within the "Machine and Mechanism Science Series," presenting recent trends, research results and new challenges in the field of medical and service robotics. "
A critical part of ensuring that systems are advancing alongside technology without complications is problem solving. Practical applications of problem-solving theories can model conflict and cooperation and aid in creating solutions to real-world problems. Soft-Computing-Based Nonlinear Control Systems Design is a critical scholarly publication that examines the practical applications of control theory and its applications in problem solving to fields including economics, environmental management, and financial modelling. Featuring a wide range of topics, such as fuzzy logic, nature-inspired algorithms, and cloud computing, this book is geared toward academicians, researchers, and students seeking relevant research on control theory and its practical applications.
This thesis focuses on the study of the optical response of new atomically thin two-dimensional crystals, principally the family of transition metal dichalcogenides like MoS2. One central theme of the thesis is the precise treatment of the linear and second-order nonlinear optical susceptibilities of atomically thin transition metal dichalcogenides. In addition to their significant scientific interest as fundamental material responses, these studies provide essential knowledge and convenient characterization tools for the application of these 2D materials in opto-electronic devices. Another important theme of the thesis is the valley physics of atomically thin transition metal dichalcogenides. It is shown that the degeneracy in the valley degree of freedom can be lifted and a valley polarization can be created using a magnetic field, which breaks time reversal symmetry in these materials. These findings enhance our basic understanding of the valley electronic states and open up new opportunities for valleytronic applications using two-dimensional materials.
This book introduces and illustrates modeling, sensing, and control methods for analyzing, designing, and developing spherical motors. It systematically presents models for establishing the relationships among the magnetic fields, position/orientation and force/torque, while also providing time-efficient solutions to assist researchers and engineers in studying and developing these motors. In order to take full advantage of spherical motors' compact structure in practical applications, sensing and control methods that utilize their magnetic fields and eliminate the need to install external sensors for feedback are proposed. Further, the book investigates for the first time spherical motors' force/torque manipulation capability, and proposes algorithms enabling the ball-joint-like end-effector for haptic use based on these motors' hybrid position/force actuation modes. While systematically presenting approaches to their design, sensing and control, the book also provides many examples illustrating the implementation issues readers may encounter.
This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology's true potential for the next generation VLSI.
Clusters are geographic concentrations of interconnected companies, specialized suppliers, service providers, and associated institutions in a particular field that are present in a nation or region. The development and upgrading of clusters is an important agenda for governments, companies, and other institutions. Cluster growth initiatives are an important new direction in economic policy, building on earlier efforts in macroeconomic stabilization, privatization, market opening, and cost reduction related to doing business. Comparing High Technology Firms in Developed and Developing Countries: Cluster Growth Initiatives is the leading source of information for readers interested in this field of study as it promotes scientific discussion on policies and practice of cluster growth, as well as covers the emerging research topics which are going to define the future of the management of technology. Furthermore, this book demonstrates the effectiveness and efficiency of technology policy based on observations of differential growth rate of high technology firms in clusters, and explores the factors that explain superior performance of high technology firms to contribute the improvement of technology policy in both developed and developing countries.
This book investigates the physical layer aspects of high-speed transmission on twisted-pair copper wires, where the most performance-critical components are multi-input multi-output (MIMO) precoding and multi-line spectrum optimization as well as optimized scheduling of the transmission time slots on the fiber to the distribution point (FTTdp) copper link. The book brings theoretical results into the implementation, which requires the introduction of realistic channel models and more practical implementation constraints as found in the copper access network. A good understanding of the transmission medium, twisted-pair telephone cable bundles is the basis for this work. Starting from the analysis of measurement data from twisted-pair cable bundles at high frequencies, it presents a MIMO channel model for the FTTdp network, which allows the characteristic effects of high-frequency transmission on copper cable bundles in simulation to be reproduced and the physical layer transmission methods on the copper channels to be analyzed and optimize. The book also presents precoding optimization for more general power constraints and implementation constraints. The maximization of data rate in a transmission system such as G.fast or VDSL is a combinatorial problem, as the rate is a discrete function of the number of modulated bits. Applying convex optimization methods to the problem offers an efficient and effective solution approach that is proven to operate close to the capacity of the FTTdp channel. In addition to higher data rates, low power consumption is another important aspect of the FTTdp network, as it requires many access nodes that are supplied with power from the subscriber side over the twisted- pair copper wires. Discontinuous operation is a method of quickly adding and removing lines from the precoding group. To implement this, the system switches between different link configurations over time at a high frequency. The transmission times of all lines are jointly optimized with respect to the current rate requirements. Discontinuous operation is used to save power, but also makes it possible to further increase the data rates, taking the current subscriber traffic requirements into account. These methods are compared with theoretical upper bounds, using realistic channel models and conditions of a system implementation. The performance analysis provides deeper insights into implementation complexity trade-offs and the resulting gap to channel capacity.
Presenting a blend of applied and fundamental research in highly interdisciplinary subjects of rapidly developing areas, this book contains contributions on the frontiers and hot topics of laser physics, laser technology and laser engineering, and covers a wide range of laser topics, from all-optical signal processing and chaotic optical communication to production of superwicking surfaces, correction of extremely high-power beams, and generation of ultrabroadband spectra. It presents both review-type contributions and well researched and documented case studies, and is intended for graduate students, young scientist, and emeritus scientist working/studying in laser physics, optoelectronics, optics, photonics, and adjacent areas. The book contains both experimental and theoretical studies, as well as combinations of these two, which is known to be a most useful and interesting form of reporting scientific results, allowing students to really learn from each contribution. The book contains over 130 illustrations.
This Expert Guide gives you the techniques and technologies in embedded multicore to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when building and managing multicore embedded systems. Following an embedded system design path from start to finish, our team of experts takes you from architecture, through hardware implementation to software programming and debug. With this book you will learn: What motivates multicore The architectural options and tradeoffs; when to use what How to deal with the unique hardware challenges that multicore presents How to manage the software infrastructure in a multicore environment How to write effective multicore programs How to port legacy code into a multicore system and partition legacy software How to optimize both the system and software The particular challenges of debugging multicore hardware and software Examples demonstrating timeless implementation details
Topological Insulators (TIs) are insulators in the bulk, but have exotic metallic states at their surfaces. The topology, associated with the electronic wavefunctions of these systems, changes when passing from the bulk to the surface. This work studies, by means of infrared spectroscopy, the low energy optical conductivity of Bismuth based TIs in order to identify the extrinsic charge contribution of the bulk and to separate it from the intrinsic contribution of the surface state carriers. The extensive results presented in this thesis definitely shows the 2D character of the carriers in Bismuth-based topological insulators. The experimental apparatus and the FTIR technique, the theory of optical properties and Surface Plasmon Polaritons, as well as sample preparation of both crystals and thin films, and the analysis procedures are thoroughly described.
This book provides techniques to tackle the design challenges raised by the increasing diversity and complexity of emerging, heterogeneous architectures for embedded systems. It describes an approach based on techniques from software engineering called aspect-oriented programming, which allow designers to control today's sophisticated design tool chains, while maintaining a single application source code. Readers are introduced to the basic concepts of an aspect-oriented, domain specific language that enables control of a wide range of compilation and synthesis tools in the partitioning and mapping of an application to a heterogeneous (and possibly multi-core) target architecture. Several examples are presented that illustrate the benefits of the approach developed for applications from avionics and digital signal processing. Using the aspect-oriented programming techniques presented in this book, developers can reuse extensive sections of their designs, while preserving the original application source-code, thus promoting developer productivity as well as architecture and performance portability. Describes an aspect-oriented approach for the compilation and synthesis of applications targeting heterogeneous embedded computing architectures. Includes examples using an integrated tool chain for compilation and synthesis. Provides validation and evaluation for targeted reconfigurable heterogeneous architectures. Enables design portability, given changing target devices* Allows developers to maintain a single application source code when targeting multiple architectures.
This book provides a careful explanation of the basic areas of electronics and computer architecture, along with lots of examples, to demonstrate the interface, sensor design, programming and microcontroller peripheral setup necessary for embedded systems development. With no need for mechanical knowledge of robots, the book starts by demonstrating how to modify a simple radio-controlled car to create a basic robot. The fundamental electronics of the MSP430 are described, along with programming details in both C and assembly language, and full explanations of ports, timing, and data acquisition. Further chapters cover inexpensive ways to perform circuit simulation and prototyping. Key features include: Thorough treatment of the MSP430 s architecture and functionality along with detailed application-specific guidance Programming and the use of sensor technology to build an embedded system A learn-by-doing experience With this book you will learn: The basic theory for electronics design - Analog circuits - Digital logic - Computer arithmetic - Microcontroller programming How to design and build a working robotAssembly language and C
programming How to develop your own high-performance embedded
systems application using an on-going robotics application Teaches how to develop your own high-performance embedded systems application using an on-going robotics application Thorough treatment of the MSP430 s architecture and functionality along with detailed application-specific guidance. Focuses on electronics, programming and the use of sensor technology to build an embedded system Covers assembly language and C programming " |
You may like...
The Analysis of Burned Human Remains
Christopher W. Schmidt, Steven A. Symes
Hardcover
R1,879
Discovery Miles 18 790
Mass Identifications - Statistical…
Daniel Kling, Thore Egeland, …
Paperback
R2,522
Discovery Miles 25 220
SAP ERP Financials Quick Reference Guide…
Surya Padhi
Paperback
Collaborative Enterprise Architecture…
Stefan Bente, Uwe Bombosch, …
Paperback
Fundamentals of Forensic Science
Max M. Houck, Jay A. Siegel
Hardcover
R2,146
Discovery Miles 21 460
|