![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
This practical reference remains the most comprehensive guide to
the fundamental theories, techniques, and strategies used for
battery operation and design. It includes new and revised chapters
focusing on the safety, performance, quality, and enhancement of
various batteries and battery systems. From automotive,
electrochemical, and high-energy applications to system
implementation, selection, and standardization, the Second Edition
presents expert discussions on electrochemical energy storage, the
advantages of battery-powered traction, the disposal and recycling
of used batteries, hazard prevention, and the chemistry and physics
of lithium primary batteries.
Storage and conversion are critical components of important energy-related technologies. "Advanced Batteries: Materials Science Aspects" employs materials science concepts and tools to describe the critical features that control the behavior of advanced electrochemical storage systems. This volume focuses on the basic phenomena that determine the properties of the components, i.e. electrodes and electrolytes, of advanced systems, as well as experimental methods used to study their critical parameters. This unique materials science approach utilizes concepts and methodologies different from those typical in electrochemical texts, offering a fresh, fundamental and tutorial perspective of advanced battery systems. Graduate students, scientists and engineers interested in electrochemical energy storage and conversion will find "Advanced Batteries: Materials Science Aspects" a valuable reference.
The problem of storing hydrogen safely and effectively is one of the major technological barriers currently preventing the widespread adoption of hydrogen as an energy carrier and the subsequent transition to a so-called hydrogen economy. Practical issues with the storage of hydrogen in both gas and liquid form appear to make reversible solid state hydrogen storage the most promising potential solution. "Hydrogen Storage Materials" addresses the characterisation of the hydrogen storage properties of the materials that are currently being considered for this purpose. The background to the topic is introduced, along with the various types of materials that are currently under investigation, including nanostructured interstitial and complex hydrides, and porous materials, such as metal-organic frameworks and microporous organic polymers. The main features of "Hydrogen Storage Materials" include: an overview of the different types of hydrogen storage materials and the properties that are of interest for their practical use;descriptions of the gas sorption measurement methods used to determine these properties, and the complementary techniques that can be used to help corroborate hydrogen uptake data; andextensive coverage of the practical considerations for accurate hydrogen sorption measurement that drive both instrument design and the development of experimental methodology. "Hydrogen Storage Materials" provides an up-to-date overview of the topic for experienced researchers, while including enough introductory material to serve as a useful, practical introduction for newcomers to the field.
Lithium Batteries: Science and Technology is a comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. This volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods. Readers can find a wealth of energy related topics, such as energy storage, use of hybrid systems and battery-based transportation. This book is designed primarily as a reference book covering all aspects of physics, chemistry and the materials science of Li batteries. book for advanced level courses. Lithium Batteries: Science & Technology should be a valuable reference book for researchers, battery developers and manufacturers, and industrial managers working in the field of Li batteries.
This guidebook for managers and other decision makers analyses all important aspects that have to be considered when evaluating photovoltaics as a potential option in the power-supply industry and industrial development. Since such an analysis is quite complex and requires know-how from several scientific disciplines, the book draws upon the expertise of about 40 invited experts. Consensus statements on some of the controversial items such as cost development or energy pay-back time are given. In addition, the book is rounded out by an evaluation of the technological status of photovoltaics. The Photovoltaics Guidebook for Decision Makers enables readers to form their own opinions, particularly on the realistic potential and role of photovoltaics in energy policy, the power-supply industry and industrial development.
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of lithium polysulfides and the poor reversibility of lithium-metal anode, among others. However over the past several years significant progress has been made in the research and development of Li-S batteries. This book addresses most aspects of Li-S batteries and reviews the topic in depth. Advances are summarized and guidance for future development is provided. By elevating our understanding of Li-S batteries to a high level this may inspire new ideas for advancing this technology and making it commercially viable. This book is of interest to the battery community and will benefit graduate students and professionals working in this field
This book introduces the working principle, materials, and design of seawater batteries and reviews the current state-of-the-art technologies in cells and modules. This book looks at the characteristics of seawater, then reviews the basic electrochemical processes involved in the storage of electrical charge in seawater batteries, and then discusses the development of anode, cathode, and membrane materials, and cell engineering progress. In particular, Chapter 3 contains the latest research and development results for rechargeable seawater batteries. The book has been written for a broad readership including graduate students, academic and industrial researchers working on sustainable, low-cost energy.
This book gathers selected research papers presented at the International Conference on Power, Control and Communication Infrastructure 2019 (ICPCCI 2019), organized by the Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, India, on July 4-5, 2019. It highlights the latest advances, trends and challenges in electrical power generation-integration-transmission-distribution-conversion-storage-control, electrical machines, power quality, energy management, electrical infrastructure of future grids-buildings-cities-transportation, energy conversion, plasma technology, renewable energy & grid integration, energy storage systems, power electronic converters, power system protection & security, FACTS and HVDC, power quality, power system operation & control, computer applications in power systems, energy management, energy policies & regulation, power & energy education, restructured power system, future grids, buildings, cities & resiliency, microgrids, electrical machines & drives, transportation electrification, optimal operation, electricity-gas-water coordination, condition monitoring & predictive maintenance of electric equipment, and asset management. The solutions discussed here will encourage and inspire researchers, industry professionals and policymakers to put these methods into practice.
Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency. Thermal energy systems are explored in depth, as are photovoltaic generation and other solar energy applications such as solar furnaces and solar refrigeration systems. This second and updated edition of Advanced Control of Solar Plants includes new material on: solar towers and solar tracking; heliostat calibration, characterization and offset correction; solar radiation, estimation, prediction, and computation; and integrated control of solar plants. This new edition contains worked examples in the text as well as proposed exercises and simulation models and so will be of great use to the student and academic, as well as the industrial practitioner.
Today's consumers of portable electronics consumers are demanding
devices not only deliver more power but also work healthy for the
environment. This fact alone has lead major corporations like
Intel, BIC, Duracell and Microsoft to believe that Microfuel Cells
could be the next-generation power source for electronic products.
Compact and readable, Microfuels Principles and Applications,
offers engineers and product designers a reference unsurpassed by
any other in the market. The book starts with a clear and rigorous
exposition of the fundamentals engineering principles governing
energy conversion for small electronic devices, followed by
self-contained chapters concerning applications. The authors
provide original points of view on all types of commercially
available micro fuel cells types, including micro proton exchange
membrane fuel cells, micro direct methanol fuel cells, micro solid
oxide fuel cells and micro bio-fuel cells. The book also contains a
detailed introduction to the fabrication of the components and the
assembly of the system, making it a valuable reference both in
terms of its application to product design and understanding micro
engineering principles.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Thoroughly revised, comprehensive coverage of battery technology, characteristics, and applications This fully updated guide offers complete coverage of batteries and battery usage from classic designs to emerging technologies. Compiled by a pioneer in secondary lithium batteries, the book contains all the information needed to solve engineering problems and make proper battery selections. You will get in-depth descriptions of the principles, properties, and performance specifications of every major battery type. Linden's Handbook of Batteries, Fifth Edition, contains cutting-edge data and equations, design specifications, and troubleshooting techniques from international experts. New chapters discuss renewable energy systems, battery failure analysis, lithium-ion battery technology, materials, and component design. Recent advances in smartphones and hybrid car batteries are clearly explained, including maximizing re-chargeability, reducing cost, improving safety, and lessening environmental impact. Coverage includes: *Electricity, electrochemistry, and batteries*Raw materials*Battery components*Principles of electrochemical cell operations*Battery product overview*Electrochemical cell designs (platform technologies)*Primary batteries*Secondary batteries*Miscellaneous and specialty batteries*Battery applications*Battery industry infrastructure
This book features selected papers presented at the 2021 International Conference on Development and Application of Carbon Nanomaterials in Energetic Materials. It discusses the latest progress in the field of advance carbon nanomaterials in energetic materials; including the structural design, theoretical calculation, synthesis, properties, and applications of carbon materials. It also presents the new technology and applications of advanced carbon nanomaterials in energetic materials. It can be used as a reference book for researchers in energetic materials and related fields. It is also be useful for undergraduates and postgraduates studying these topics.
A large number of solar cell and solar cell systems are described in this volume. The theory of their operation, their design and the levels of their performance is discussed. Originally the book appeared in 1978 but extensive change over the intervening years in the fields of energy generation and consumption, solar energy and solar cells, has necessitated the publication of an updated version. The text initially surveys the requirements of humanity, the subsequent need for solar cells, the nature of sunlight and the properties of semiconductors. Concrete examples, extensive references and theoretical arguments are then used to present a comparison of options available in the design and operation of solar cells and solar cell systems. The cells - constructed from single, crystal, polycrystalline and amorphous semiconductors - and the systems - have varying designs and differing levels of solar energy for input and produce electricity or electrical and thermal energies. Solar cell production, economics and environmental effects are considered throughout the publication.
This unique book is at the nexus of modern software programming practices and electrochemical process engineering. It is the authoritative text on developing open source software for many applications, including: * fuel cells; * electrolyzers; and * batteries. Written by experts in the field in the open source computational fluid dynamics (CFD) code suite OpenFOAM, this book is intended for process engineering professionals developing practical electrochemical designs for industry, as well as researchers focused on finding tomorrow's answers today. The book covers everything from micro-scale to cell-scale to stack-scale models, with numerous illustrations and programming examples. Starting from a clear explanation of electrochemical processes and simple illustrative examples, the book progresses in complexity through a range of diverse applications. After reading this book, the reader is able to take command and control of model development as an expert. The book is aimed at all engineers and scientists with basic knowledge of calculus and programming in C++.
This highly informative and carefully presented book offers a comprehensive overview of the fundamentals of thermal engineering. The book focuses both on the fundamentals and more complex topics such as the basics of thermodynamics, Zeroth Law of thermodynamics, first law of thermodynamics, application of first law of thermodynamics, second law of thermodynamics, entropy, availability and irreversibility, properties of pure substance, vapor power cycles, introduction to working of IC engines, air-standard cycles, gas turbines and jet propulsion, thermodynamic property relations and combustion. The author has included end-of-chapter problems and worked examples to augment learning and self-testing. This book is a useful reference to undergraduate students in the area of mechanical engineering.
This book analyzes issues surrounding the efficient integration of demand response programs (DRPs) on operation problems in smart grids. The benefits offered by demand response programs (DRPs) for load-serving entities, grid operators, and electricity consumers are explained, including decreased electricity prices and risk management. In-depth chapters discuss the flexibility of market operations, market power mitigation, and environmental benefits-making this a must-have reference for engineers and related practicing professionals working for organizations in the electricity market, including reliability organizations, distribution companies, transmission companies, and electric end-users.
Fuel cells are one of the most promising clean energy conversion devices that can solve the environmental and energy problems in our society. However, the high platinum loading - and thus the high cost of fuel cells - prevents its commercialization. Non- or low- platinum electrocatalysts are needed to lower the fuel cell cost. "Electrocatalysis in Fuel Cells: A Non and Low Platinum Approach" is a comprehensive book summarizing recent advances of electrocatalysis in oxygen reduction and alcohol oxidation, with a particular focus on non- and low-Pt electrocatalysts. All twenty four chapters were written by worldwide experts in their fields. The fundamentals and applications of novel electrocatalysts are discussed thoroughly in the book. The book is geared toward researchers in the field, postgraduate students and lecturers, and scientists and engineers at fuel cell and automotive companies. It can even be a reference book for those who are interested in this area.
This concise sourcebook of the electrochemical, engineering and economic principles involved in the development and commercialization of fuel cells offers a thorough review of applications and techno-economic assessment of fuel cell technologies, plus in-depth discussion of conventional and novel approaches for generating energy. Parts I and II explain basic and applied electrochemistry relevant to an understanding of fuel cells. Part III covers engineering and technology aspects. The book is useful for undergraduate and graduate students and scientists interested in fuel cells. Unlike any other current book on fuel cells, each chapter includes problems based on the discussions in the text.
This book provides users, pump manufactures, engineers, researchers and students with extensive information about pump's behavior in reverse operation. It reports on cutting-edge methods for selecting the proper PAT and improving PAT's efficiency, discusses PAT's reliability, economic issues and environmental impact as well. The book describes in detail electromechanical equipment of PAT systems, their installation and operation, and gives important practical insight into the use of PAT in water transmission and distribution systems, as part of thermal power plants and cooling systems, in oil distribution systems and other systems as well. It reports on different types on PAT control modes as well as on numerical methods useful for PAT analysis and implementation. All in all, the book represents a comprehensive practice-oriented reference-guide to design engineers, as well as PAT general users and manufactures. It also provides researchers with extensive technical information on the use of PAT thus fostering new discussions and ideas to improve current methods and cope with future challenges.
This book discusses the optimal design and operation of multi-carrier energy systems, providing a comprehensive review of existing systems as well as proposing new models. Chapters cover the theoretical background and application examples of interconnecting energy technologies such as combined heat and power plants, natural gas-fired power plants, power to gas technology, hydropower plants, and water desalination systems, taking into account the operational and technical constraints of each interconnecting element and the network constraint of each energy system. This book will be a valuable reference for power network and mechanical system professionals and engineers, electrical power engineering researchers and developers, and professionals from affiliated power system planning communities. Provides insight on the design and operation of multi-carrier energy systems; Covers both theoretical aspects and technical applications; Includes case studies to help apply concepts to real engineering situations.
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world's first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
The 7th installment of the REWAS conference series held at the TMS Annual Meeting& Exhibition focuses on developing tomorrow's technical cycles. The papers in thiscollection explore the latest technical and societal developments enabling sustainabilitywithin our global economy with an emphasis on recycling and waste management. The2022 collection includes contributions from the following symposia: * Coupling Metallurgy and Sustainability: An EPD Symposium in Honor of Diran Apelian* Recovering the Unrecoverable* Sustainable Production and Development Perspectives* Automation and Digitalization for Advanced Manufacturing* Decarbonizing the Materials Industry
This book shows the promising future and essential issues on the storage of the supercritical gases, including hydrogen, methane and carbon dioxide, by adsorption with controlling the gas-solid interaction by use of designed nanoporous materials. It explains the reason why the storage of these gases with adsorption is difficult from the fundamentals in terms of gas-solid interaction. It consists of 14 chapters which describe fundamentals, application, key nanoporous materials (nanoporous carbon, metal organic frame works, zeolites) and their storage performance for hydrogen, methane, and carbon dioxide. Thus, this book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for graduate students focusing on clean energy technology, green chemistry, energy conversion and storage, chemical engineering, nanomaterials science and technology, surface and interface science, adsorption science and technology, carbon science and technology, metal organic framework science, zeolite science, nanoporous materials science, nanotechnology, environmental protection, and gas sensors. |
![]() ![]() You may like...
Ambivalent - Photography And Visibility…
Patricia Hayes, Gary Minkley
Paperback
|