![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
Including chemical, synthetic, and cross-disciplinary approaches; this book includes the necessary techniques and technologies to help readers better understand polymers for polymer electrolyte membrane (PEM) fuel cells. The methods in the book are essential to researchers and scientists in the field and will lead to further development in polymer and fuel cell technologies.- Provides complete, essential, and comprehensive overview of polymer applications for PEM fuel cells- Emphasizes state-of-the-art developments and methods, like PEMs for novel fuel cells and polymers for fuel cell catalysts- Includes detailed chapters on major topics, like PEM for direct liquid fuel cells and fluoropolymers and non-fluorinated polymers for PEM- Has relevance to a range of industries - like polymer engineering, materials, and green technology - involved with fuel cell technologies and R&D
Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge-discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.
This book provides the short history, current state, main problems and historical perspective for the development of electrical power engineering. The focus of the textbook is on the two most important issues related to meeting of the growing needs of humanity in electricity: "Hunger for energy" and "Ecological infarct". In the book are discussed the methods of their solution: optimization of energy balance, use of renewable energy resources, new methods of electricity production, increase of the efficiency of production, accumulation, transmission, distribution and consumption electricity. The third issue - social and geopolitical threats due to the increasing need for energy - in the textbook is not considered inasmuch it details in non-stop regime discussed in the mass media. Choosing the structure and content of the textbook is based on the ten years of the author experience of giving lectures to Tomsk Polytechnic University students who study according to the program Electric Power Engineering. This textbook is addresed to students, masters and post-graduates. It can be interesting for everyone who is thinking about the future of our civilization, in general, and meeting of human needs in electric power, in particular.
Carbon dioxide (CO2) capture and storage (CCS) is the one advanced
technology that conventional power generation cannot do without.
CCS technology reduces the carbon footprint of power plants by
capturing and storing the CO2 emissions from burning fossil-fuels
and biomass. Volume one provides a comprehensive reference on the
state of the art research, development and demonstration of carbon
capture technology in the power sector and in industry. It
critically reviews the range of post- and pre-combustion capture
and combustion-based capture processes and technology applicable to
fossil-fuel power plants, as well as applications of CCS in other
high carbon footprint industries.
This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals-often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across-from detailed electrochemical models to algorithms used for real time estimation on a microchip-is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework-often invoking basic principles of thermodynamics or transport phenomena-and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.
The book is a comprehensive view of all electromembrane processes, including electromembrane processes for energy conversion - a currently very significant problem. The necessary theory and basic information needed for understanding the technology are explained in Part I. Materials used for ion-selective membranes and seoaration processes are described in Part II, and the applications for synthesis and energy conversion in Part III.
Starting from physical and electrochemical foundations, this textbook explains working principles of energy storage devices. After a history of galvanic cells, different types of primary, secondary and flow cells as well as fuel cells and supercapacitors are covered. An emphasis lies on the general setup and mechanisms behind those devices to enable easy understanding for students from all technical and natural science disciplines.
Applications oriented, it contains all the pertinent and comprehensive information necessary to meet the growing demands placed upon solid-state power conversion equipment. These demands include improved reliability, increased efficiency, higher packing density, improved performance plus meeting safety and EMC regulations. Features a thorough assessment of basic electrical and magnetic aspects of power conversion as well as thermal, protection, radiation and reliability considerations. Stresses semiconductor and magnetic components and gives an analysis of diverse topologies.
This text deals with the advantages of rare earth activated phosphors for the development of solid state lighting technology and in enhancing the light conversion efficiency of Si solar cells. The book initiates with a short overview of the atomic and semiconductor theory followed by introduction to phosphor, its working mechanism, role of rare earth ions in the lighting and PV devices and host materials being used. Further, it introduces the applications of inorganic phosphor for the development of green energy and technology including advantages of UP/DC conversion phosphor layers in the enhancing the cell response of PV devices. Key Features: Focuses on discussion of phosphors for both solid state lighting and photovoltaics applications Provides introduction for practical applications including synthesis and characterization of phosphor materials Includes broad, in-depth introduction of semiconductors and related theory Enhances the basic understanding of optical properties for rare earth phosphors Covers up-conversion and down-conversion phosphor for energy harvesting applications
AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. "Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept" presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Gora. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, "Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept "will also be valuable to" "power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.
Explore power electronics for both conventional and modern energy conversion technologies and systems This comprehensive textbook clearly explains the principles and applications of power electronics as a critical part of modern energy conversion systems. The book features theoretical and practical coverage of the power electronics and electric machines required for the dynamic and steady-state analysis of modern energy conversion systems, including renewable energy systems, motor-drives, and powertrains in electric vehicles. Written by a seasoned educator, Power Electronics in Energy Conversion Systems contains topics not included in other textbooks, such as high-frequency phenomenon in motor-drives and fault-tolerant converters. Readers will get detailed discussions on steady-state and dynamics of rotating machines, switching and control of smart inverters, active rectifiers and dc-dc converters, scalar and vector control schemes in motor drives, power electronic converters as the interface between renewable energy devices and the power grid and much more. The book features hundreds of illustrations and examples.
This book covers the recent development of metal oxides, hydroxides and their carbon composites for electrochemical oxidation of water in the production of hydrogen and oxygen as fuels. It includes a detailed discussion on synthesis methodologies for the metal oxides/hydroxides, structural/morphological characterizations, and the key parameters (Tafel plot, Turnover frequency, Faradic efficiency, overpotential, long cycle life etc.) needed to evaluate the electrocatalytic activity of the materials. Additionally, the mechanism behind the electro oxidation process is presented. Readers will find a comprehensive source on the close correlation between metal oxides, hydroxides, composites, and their properties and importance in the generation of hydrogen and oxygen from water. The depletion of fossil fuels from the earth's crust, and related environmental issues such as climate change, demand that we search for alternative energy resources to achieve some form of sustainable future. In this regard, much scientific research has been devoted to technologies such as solar cells, wind turbines, fuel cells etc. Among them fuel cells attract much attention because of their versatility and efficiency. In fuel cells, different fuels such as hydrogen, CO2, alcohols, acids, methane, oxygen/air, etc. are used as the fuel, and catalysts are employed to produce a chemical reaction for generating electricity. Hence, it is very important to produce these fuels in an efficient, eco-friendly, and cost effective manner. The electrochemical splitting of water is an environmentally friendly process to produce hydrogen (the greener fuel used in fuel cells), but the efficiencies of these hydrogen evolution reactions (cathodic half reaction) are strongly dependent on the anodic half reaction (oxygen evolution reaction), i.e., the better the anodic half, the better will be the cathodic reaction. Further, this oxygen evolution reaction depends on the types of active electrocatalysts used. Though many more synthetic approaches have been explored and different electrocatalysts developed, oxide and hydroxide-based nanomaterials and composites (with graphene, carbon nanotubes etc.) show better performance. This may be due to the availability of more catalytic surface area and electro active centers to carry out the catalysis process.
The electrochemical energy storage is a means to conserve electrical energy in chemical form. This form of storage benefits from the fact that these two energies share the same vector, the electron. This advantage allows us to limit the losses related to the conversion of energy from one form to another. The RS2E focuses its research on rechargeable electrochemical devices (or electrochemical storage) batteries and supercapacitors. The materials used in the electrodes are key components of lithium-ion batteries. Their nature depend battery performance in terms of mass and volume capacity, energy density, power, durability, safety, etc. This book deals with current and future positive and negative electrode materials covering aspects related to research new and better materials for future applications (related to renewable energy storage and transportation in particular), bringing light on the mechanisms of operation, aging and failure.
This book is for anyone interested in renewable energy for a sustainable future of mankind. Batteries, fuel cells, capacitors, electrolyzers and solar cells are explained at the molecular level and at the power plant level, in their historical development, in their economical and political impact, and social change. Cases from geophysics and astronomy show that electrochemistry is not confined to the small scale. Examples are shown and exercised.
The world is currently facing the urgent and demanding challenges of saving and utilizing energy as efficiently as possible. Materials science, where chemistry meets physics, has garnered a great deal of attention because of its versatile techniques for designing and producing new, desired materials enabling energy storage and conversion. This book is a comprehensive survey of the research on such materials. Unlike a monograph or a review book, it covers a wide variety of compounds, details diverse study methodologies, and spans different scientific fields. It contains cutting-edge research in chemistry and physics from the interdisciplinary team of Ehime University (Japan), the members of which are currently broadening the horizon of materials sciences through their own ideas, tailored equipment, and state-of-the-art techniques. Edited by Toshio Naito, a prominent materials scientist, this book will appeal to anyone interested in solid-state chemistry, organic and inorganic semiconductors, low-temperature physics, or the development of functional materials, including advanced undergraduate- and graduate-level students of solid-state properties and researchers in metal-complex science, materials science, chemistry, and physics, especially those with an interest in (semi)conducting and/or magnetic materials for energy storage and conversion.
This expert volume addresses the practical challenges which have so far inhibited the commercial realization of a rechargeable magnesium battery, placing the discussion within the context of the already established lithium-ion battery. Lithium-ion batteries are becoming commonplace in most power applications, starting with portable electronics and expanding to motor vehicles, stationary storage, and backup power. Since their introduction 25 years ago, they have slowly been replacing all other battery chemistries. As the technology has matured, it is nearing its theoretical limits in terms of energy density, so research and development worldwide is quickly shifting towards the study of new battery chemistries with cheaper components and higher energy densities. A very popular battery candidate which has generated a lot of recent interest is the magnesium rechargeable battery. Magnesium is five orders of magnitude more abundant than lithium, can move two electrons per cation, and is known to plate smoothly without any evidence of dendritic growth. However, many challenges remain to be overcome. This essential volume presents an unfiltered view on both the realistic promises and significant obstacles for this technology, providing key insights and proposed solutions.
Large-scale commercialization of proton exchange membrane fuel cell (PEMFC) technology has been hindered by issues of reliability, durability, and cost, which are all related to the degradation of fuel cell performance. This degradation often has root causes in contamination from fuel, air streams, or system components. With contributions from international scientists and engineers active in PEMFC research, Proton Exchange Membrane Fuel Cells: Contamination and Mitigation Strategies discusses the impacts of contamination and the contamination mitigation strategies to improve fuel cell performance and durability. The book covers the nature, sources, and electrochemistry of contaminants; their effects on fuel cell performance and lifetime; and the mechanisms of contamination. Exploring the major findings from experimental and theoretical studies in contamination-related research, the expert contributors present methods and tools used for diagnosing various contamination phenomena, along with strategies for mitigating the adverse effects of contamination. They also describe key issues in the future R&D of fuel cell contamination and control. Helping to facilitate pioneering PEMFC R&D and accelerate sustainable commercialization, this book contains the latest research efforts and novel developments as well as important new directions in PEMFC contamination. It offers a comprehensive overview of nearly every aspect of fuel cell contamination, from fundamentals to applications.
This book will address the application of gas phase thin film methods, including techniques such as evaporation, sputtering, CVD, and ALD to the synthesis of materials on nanostructured and high aspect-ratio high surface area materials. We have chosen to introduce these topics and the different application fields from a chronological perspective: we start with the early concepts of step coverage and later conformality in semiconductor manufacturing, and how later on the range of application branched out to include others such as energy storage, catalysis, and more broadly nanomaterials synthesis. The book will describe the ballistic and continuum descriptions of gas transport on nanostructured materials and then will move on to incorporate the impact of precursor-surface interaction. We will finally conclude approaching the subjects of feature shape evolution and the connection between nano and reactor scales and will briefly present different advanced algorithms that can be used to effectively compute particle transport, in some cases borrowing from other disciplines such as radiative heat transfer. The book gathers in a single place information scattered over thirty years of scientific research, including the most recent results in the field of Atomic Layer Deposition. Besides a mathematical description of the fundamentals of thin film growth in nanostructured materials, it includes analytic expressions and plots that can be used to predict the growth using gas phase synthesis methods in a number of ideal approximations. The focus on the fundamental aspects over particular processes will broaden the appeal and the shelf lifetime of this book. The reader of this book will gain a thorough understanding on the coating of high surface area and nanostructured materials using gas phase thin film deposition methods, including the limitations of each technique. Those coming from the theoretical side will gain the knowledge required to model the growth process, while those readers more interested in the process development will gain the theoretical understanding will be useful for process optimization.
This book updates the latest advancements in new chemistries, novel materials and system integration of rechargeable batteries, including lithium-ion batteries and batteries beyond lithium-ion and addresses where the research is advancing in the near future in a brief and concise manner. The book is intended for a wide range of readers from undergraduates, postgraduates to senior scientists and engineers. In order to update the latest status of rechargeable batteries and predict near research trend, we plan to invite the world leading researchers who are presently working in the field to write each chapter of the book. The book covers not only lithium-ion batteries but also other batteries beyond lithium-ion, such as lithium-air, lithium-sulfur, sodium-ion, sodium-sulfur, magnesium-ion and liquid flow batteries.
Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.
Graphene has grasped the attention of academia and industry world-wide due its unique structure and reported advantageous properties. This was reflected via the 2010 Nobel Prize in Physics being awarded for groundbreaking experiments regarding the two-dimensional material graphene. One particular area in which graphene has been extensively explored is electrochemistry where it is potentially the world’s thinnest electrode material. Graphene has been widely reported to perform beneficially over existing electrode materials when used within energy production or storage devices and when utilised to fabricate electrochemical sensors. This book charts the history of graphene, depicting how it has made an impact in the field of electrochemistry and how scientists are trying to unravel its unique properties, which has, surprisingly led to its fall from grace in some areas. A fundamental introduction into Graphene Electrochemistry is given, through which readers can acquire the tools required to effectively explain and interpret the vast array of graphene literature. The readers is provided with the appropriate insights required to be able to design and implement diligent electrochemical experiments when utilising graphene as an electrode material.
This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on the zinc phthalocyanine: C60 material system, are of general nature. They propose and demonstrate experimental approaches for getting a deeper understanding of the dominating processes in amorphous thin-film based solar cells in general. The main focus is on the interpretation of the current-voltage characteristics (J-V curve). This very standard measurement technique for a solar cell reflects the electrical processes in the device. Comparing experimental to simulation data, the author discusses the reasons for S-Shaped J-V curves, the role of charge carrier mobilities and energy barriers at interfaces, the dominating recombination mechanisms, the charge carrier generation profile, and other efficiency-limiting processes in organic solar cells. The book concludes with an illustrative guideline on how to identify reasons for changes in the J-V curve. This book is a suitable introduction for students in engineering, physics, material science, and chemistry starting in the field of organic or hybrid thin-film photovoltaics. It is just as valuable for professionals and experimentalists who analyze solar cell devices.
This book covers system-level design optimization and implementation of hybrid energy storage systems. The author introduces various techniques to improve the performance of hybrid energy storage systems, in the context of design optimization and automation. Various energy storage techniques are discussed, each with its own advantages and drawbacks, offering viable, hybrid approaches to building a high performance, low cost energy storage system. Novel design optimization techniques and energy-efficient operation schemes are introduced. The author also describes the technical details of an actual prototype implementation of a 300 W scale hybrid energy storage system.
Liberating Energy from Carbon analyzes energy options in a carbon-constrained world. Major strategies and pathways to decarbonizing the carbon-intensive economy are laid out with a special emphasis on the prospects of achieving low-risk atmospheric CO2 levels. The opportunities and challenges in developing and bringing to market novel low and zero-carbon technologies are highlighted from technical, economic and environmental viewpoints. This book takes a unique approach by treating carbon in a holistic manner-tracking its complete transformation chain from fossil fuel sources to the unique properties of the CO2 molecule, to carbon capture and storage and finally, to CO2 industrial utilization and its conversion to value-added products and fuels. This concise but comprehensive sourcebook guides readers through recent scientific and technological developments as well as commercial projects that aim for the decarbonization of the fossil fuel-based economy and CO2 utilization that will play an increasingly important role in the near- and mid-term future. This book is intended for researchers, engineers, and students working and studying in practically all areas of energy technology and alternative energy sources and fuels.
Li-Co-Mn-Ni oxides have been of extreme interest as potential positive electrode materials for next generation Li-ion batteries. Though many promising materials have been discovered and studied extensively, much debate remains in the literature about the structures of these materials. There is no consensus as to whether the lithium-rich layered materials are single-phase or form a layered-layered composite on the few nanometer length-scales. Much of this debate came about because no phase diagrams existed to describe these systems under the synthesis conditions used to make electrode materials. Detailed in this thesis are the complete Li-Co-Mn-O and Li-Mn-Ni-O phase diagrams generated by way of the combinatorial synthesis of mg-scale samples at over five hundred compositions characterized with X-ray diffraction. Selected bulk samples were used to confirm that the findings are relevant to synthesis conditions used commercially. The results help resolve a number of points of confusion and contradiction in the literature. Amongst other important findings, the compositions and synthesis conditions giving rise to layered-layered nano-composites are presented and electrochemical results are used to show how better electrode materials can be achieved by making samples in the single phase-layered regions. |
You may like...
Advanced Methods and Deep Learning in…
E.R. Davies, Matthew Turk
Paperback
R2,578
Discovery Miles 25 780
Making a Machine That Sees Like Us
Zygmunt Pizlo, Yunfeng Li, …
Hardcover
R2,256
Discovery Miles 22 560
Video-Based Surveillance Systems…
Graeme A. Jones, Nikos Paragios, …
Hardcover
R5,298
Discovery Miles 52 980
Perceptual Organization for Artificial…
Kim L Boyer, Sudeep Sarkar
Hardcover
R2,848
Discovery Miles 28 480
|