![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > Energy conversion & storage
Parabolic Trough Solar Collectors: Thermal and Hydraulic Enhancement Using Passive Techniques and Nanofluids systematically and methodically examines all aspects of the essential and basic elements of parabolic trough solar collector (PTSC) design and performance enhancement techniques. The book provides thorough optical, thermal, and exergetic analyses along with a review of experimental and numerical studies performed on thermal augmentation methods, which includes the use of conventional fluids and advanced fluids such as nanofluids and hybrid nanofluids in PTSC. Moreover, the use of passive techniques, turbulators, and surface modifications with different shapes and configurations associated with PTSC is presented. The PTSC's thermal efficiency augmentation estimation with the utilization of different fluids (i.e. conventional or advanced fluids) is summarized and analyzed in each case study, and the ongoing patterns in hybrid nanofluid utilization are provided. Given the interdisciplinary nature of renewable energy systems design, this comprehensive reference will be an invaluable resource for engineering and industrial professionals involved in energy engineering design, power plant design, and solar energy systems design. Presents all state-of-the-art aspects of PTSC design and implementation; Hands-on reference for anyone involved in renewable energy systems design; Includes case studies.
The laws of thermodynamics-and their implications for architecture-have not been fully integrated into architectural design. Architecture and building science too often remain constrained by linear concepts and methodologies regarding energy that occlude significant quantities and qualities of energy. The Hierarchy of Energy in Architecture addresses this situation by providing a clear overview of what energy is and what architects can do with it. Building on the emergy method pioneered by systems ecologist Howard T. Odum, the authors situate the energy practices of architecture within the hierarchies of energy and the thermodynamics of the large, non-equilibrium, non-linear energy systems that drive buildings, cities, the planet and universe. Part of the PocketArchitecture series, the book is divided into a fundamentals section, which introduces key topics and the emergy methodology, and an applications section, which features case studies applying emergy to various architectural systems. The book provides a concise but rigorous exposure to the system boundaries of the energy systems related to buildings and as such will appeal to professional architects and architecture students.
This book deals with the management and valuation of energy storage in electric power grids, highlighting the interest of storage systems in grid applications and developing management methodologies based on artificial intelligence tools. The authors highlight the importance of storing electrical energy, in the context of sustainable development, in "smart grids", and discuss multiple services that storing electrical energy can bring. Methodological tools are provided to build an energy management system storage following a generic approach. These tools are based on causal formalisms, artificial intelligence and explicit optimization techniques and are presented throughout the book in connection with concrete case studies.
Microbial Electrochemical and Fuel Cells: Fundamentals and Applications contains the most updated information on bio-electrical systems and their ability to drive an electrical current by mimicking bacterial interactions found in nature to produce a small amount of power. One of the most promising features of the microbial fuel cell is its application to generate power from wastewater, and its use in the treatment of water to remove contaminants, making it a very sustainable source of power generation that can feasibly find application in rural areas where providing more conventional sources of power is often difficult. The book explores, in detail, both the technical aspects and applications of this technology, and was written by an international team of experts in the field who provide an introduction to microbial fuel cells that looks at their electrochemical principles and mechanisms, explains the materials that can be used for the various sections of the fuel cells, including cathode and anode materials, and provides key analysis of microbial fuel cell performance looking at their usage in hydrogen production, waste treatment, and sensors, amongst other applications.
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world's first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications offers a systematic and state-of-the-art overview of the materials, system design, and related issues for the development of lead-acid rechargeable battery technologies. Featuring contributions from leading scientists and engineers in industry and academia, this book: Describes the underlying science involved in the operation of lead-acid batteries Highlights advances in materials science and engineering for materials fabrication Delivers a detailed discussion of the mathematical modeling of lead-acid batteries Analyzes the integration of lead-acid batteries with other primary power systems Explores emerging applications such as electric bicycles and microhybrid vehicles Lead-Acid Battery Technologies: Fundamentals, Materials, and Applications provides researchers, students, industrial professionals, and manufacturers with valuable insight into the latest theories, experimental methodologies, and research achievements in lead-acid battery technologies.
The laws of thermodynamics-and their implications for architecture-have not been fully integrated into architectural design. Architecture and building science too often remain constrained by linear concepts and methodologies regarding energy that occlude significant quantities and qualities of energy. The Hierarchy of Energy in Architecture addresses this situation by providing a clear overview of what energy is and what architects can do with it. Building on the emergy method pioneered by systems ecologist Howard T. Odum, the authors situate the energy practices of architecture within the hierarchies of energy and the thermodynamics of the large, non-equilibrium, non-linear energy systems that drive buildings, cities, the planet and universe. Part of the PocketArchitecture series, the book is divided into a fundamentals section, which introduces key topics and the emergy methodology, and an applications section, which features case studies applying emergy to various architectural systems. The book provides a concise but rigorous exposure to the system boundaries of the energy systems related to buildings and as such will appeal to professional architects and architecture students.
This new Routledge collection brings together the major works on the many types of energy-storage technologies and systems, as well as their applications. The energy-storage topics covered include battery storage, hydrogen energy storage, flywheel energy storage, compressed gas energy storage, pumped storage, magnetic storage, chemical storage, thermal energy storage, thermochemical energy storage, organic and biological energy storage, and others. Included are categorizations and comparisons of the main energy-storage technologies. The collection addresses both existing and potential future energy-storage technologies and systems. Existing methods and technologies for energy storage are covered to ensure a sound understanding of the technology utilized today, whereas new techniques that are in development or undergoing research are evaluated to provide a good understanding of what lies at and beyond the state of the art. Energy storage can be utilized in a wide range of applications, and these are also addressed. The types of applications considered range from utility and other electrical power systems, conventional and renewable power generation, and renewable energy sources, through to heat pumps, building heating and cooling and district energy systems. The ability of energy storage to facilitate the efficient, effective, and economic operation of renewable energy systems is covered throughout the collection by, for example, focusing on using energy storage to improve solar- and wind-power systems and other renewable energy applications. The utilization of energy storage in developed, as well as emerging, economies is also covered, to provide global coverage.
Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph: Introduces the underlying theory and history of lithium-ion batteries Describes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separators Discusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current collectors, and cases Examines the assembly processes and electrochemical performance of lithium-ion batteries Explores applications in power tools, electric vehicles, aerospace, and more Lithium-Ion Batteries: Fundamentals and Applications delivers a systematic overview of lithium-ion batteries, from physical properties to manufacturing technologies. The book also supplies valuable insight into potential growth opportunities in this exciting market.
This book explains the aspiring vision of a sustainable hydrogen generating system which employs nanotechnology one way or the other and presents a detailed update on research activities, achievements and challenges. It explores how nanotechnology is reshaping science in general and how this can be applied to the generation and storage of hydrogen energy. This book begins by highlighting the importance of hydrogen a source of sustainable energy and its impact on the technical advances of fuel cells, internal combustion engines, batteries and power plants. The book depicts the role of nanotechnology in the development of sustainable hydrogen. Comprehensive studies on various nanotechnologies involved in hydrogen generation are discussed in separate chapters, representing a complete picture of hydrogen generation utilizing nanotechnology. This book serves as a useful research tool for academics and practitioners looking towards new ways to develop and consume energy, without conceding our environment. Providing the advantages and disadvantages of each technology discussed, this book shows the benefits of utilizing nanotechnology in this field.
This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on electric vehicle batteries. Electrification is one road towards sustainable road transportation, and battery technology is one of the key enabling technologies. However, at the same time, battery technology is one of the main obstacles for a broad commercial launch of electric vehicles. This book includes research contributions which try to bridge the gap between research and innovation in the field of battery technology for electric vehicles. The target audience primarily comprises researchers and experts in the field.
Hazardous energy present in systems, machines, and equipment has injured, maimed, and killed many workers. One serious injury can stop the growth of your business in its tracks. Management of Hazardous Energy: Deactivation, De-Energization, Isolation, and Lockout provides the practical tools needed to assess hazardous energy in equipment, machines, and systems, and covers how to manage hazardous energy through elimination or control in order to ensure worker safety and regulatory compliance. Written in plain English with a minimum of jargon, this book provides safety professionals with the knowledge they need to interact with specialists, designers, and engineers to ensure that appropriate and necessary protocols and safety practices and tools are put into place for assessing the dangers and steps taken to eliminate or control exposure to hazardous energy when needed. Approaching the subject from the bottom up, the author starts at the workplace level, to ensure that the right actions happen for the right reasons. The book explains a protocol for describing the flow of energy, including transformation and/or storage; for capturing the logic of decisions about control, including failure analysis and contingency planning; and ultimately for creating procedures that are technically sound and defensible. Creating simple procedures for ensuring worker safety and regulatory compliance, the book offers US and international strategies for hazardous energy management and contains examples to illustrate the application of concepts to specific areas.
PEM Fuel Cell Diagnostic Tools presents various tools for diagnosing PEM fuel cells and stacks, including in situ and ex situ diagnostic tools, electrochemical techniques, and physical/chemical methods. The text outlines the principles, experimental implementation, data processing, and application of each technique, along with its capabilities and weaknesses. The book covers many diagnostics employed in the characterization and determination of fuel cell performance. It discusses commonly used conventional tools, such as cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and transmission electron microscopy. It also examines special tools developed specifically for PEM fuel cells, including transparent cells, cathode discharge, and current mapping, as well as recent advanced tools for diagnosis, such as magnetic resonance imaging and atomic force microscopy. For clarity, the book splits these diagnostic methodologies into two parts-in situ and ex situ. To better understand the tools, PEM fuel cell testing is also discussed. Each self-contained chapter provides cross-references to other chapters. Written by international scientists active in PEM fuel cell research, this volume incorporates state-of-the-art technical advances in PEM fuel cell diagnosis. The diagnostic tools presented help readers to understand the physical and chemical phenomena involved in PEM fuel cells.
This book details state-of-the-art fuel cell systems incorporating methanol reformers as the source of purified hydrogen (rather than compressed hydrogen). Beginning with an overview of PEM fuel cells, the book discusses the various technical approaches to methanol reforming and hydrogen purification. A unique theme carried throughout the discussion is the practical aspects of commercial applications that favor one technical approach over another. The reader gains an understanding of the chemistry, engineering, economics, and agency certification requirements that ultimately shape the optimal approach for methanol fuel cell systems targeting commercial applications.
Next-Generation Batteries with Sulfur Cathodes provides a comprehensive review of a modern class of batteries with sulfur cathodes, particularly lithium-sulfur cathodes. The book covers recent trends, advantages and disadvantages in Li-S, Na-S, Al-S and Mg-S batteries and why these batteries are very promising for applications in hybrid and electric vehicles. Battery materials and modelling are also dealt with, as is their design, the physical phenomena existing in batteries, and a comparison of batteries between commonly used lithium-ion batteries and the new class of batteries with sulfur cathodes that are useful for devices like vehicles, wind power aggregates, computers and measurement units.
A top-down approach that enables readers to master and apply core principles Using an innovative top-down approach, this text makes it possible for readers to master and apply the principles of contemporary power electronics and electromechanic power conversion, exploring both systems and individual components. First, the text introduces the role and system context of power conversion functions. Then the authors examine the building blocks of power conversion systems, describing how the components exchange power. Lastly, readers learn the principles of static and electromechanic power conversion. The Principles of Electronic and Electromechanic Power Conversion opens with a chapter that introduces core concepts in electrical systems and power conversion, followed by a chapter dedicated to electrical power sources and energy storage. Next, the book covers: * Power, reactive power, and power factor * Magnetically coupled networks * Dynamics of rotational systems * Power electronic converters * DC machines * AC machines The text offers readers a concise treatise on the basic concepts of magnetic circuits. Its simple approach to machines makes the principles of field-oriented control and space vector theory highly accessible. In order to help readers fully grasp power electronics, the authors focus on topologies that use a series transistor and diode combination connected to a DC source, a standard building block of today s power conversion systems. Problem sets at the end of each chapter enable readers to fully master each topic as they progress through the text. In summary, The Principles of Electronic and Electromechanic Power Conversion provides the most up-to-date, relevant tools needed by today s power engineers, making it an ideal undergraduate textbook as well as a self-study guide for practicing engineers.
Ten years ago, D.M. Rowe introduced the bestselling CRC Handbook of Thermoelectrics to wide acclaim. Since then, increasing environmental concerns, desire for long-life electrical power sources, and continued progress in miniaturization of electronics has led to a substantial increase in research activity involving thermoelectrics. Reflecting the latest trends and developments, the Thermoelectrics Handbook: Macro to Nano is an extension of the earlier work and covers the entire range of thermoelectrics disciplines. Serving as a convenient reference as well as a thorough introduction to thermoelectrics, this book includes contributions from 99 leading authorities from around the world. Its coverage spans from general principles and theoretical concepts to material preparation and measurements; thermoelectric materials; thermoelements, modules, and devices; and thermoelectric systems and applications. Reflecting the enormous impact of nanotechnology on the field-as the thermoelectric properties of nanostructured materials far surpass the performance of conventional materials-each section progresses systematically from macro-scale to micro/nano-scale topics. In addition, the book contains an appendix listing major manufacturers and suppliers of thermoelectric modules. There is no longer any need to spend hours plodding through the journal literature for information. The Thermoelectrics Handbook: Macro to Nano offers a timely, comprehensive treatment of all areas of thermoelectrics in a single, unified reference.
The first comprehensive book on thin-film solar cells, potentially a key technology for solving the energy production problem in the 21st century in an environmentally friendly way. It covers a wide range of scientific and technological aspects of thin film semiconductors - deposition technologies, growth mechanisms and the basic properties of amorphous and nano-crystalline silicon - as well as the optimum design theory and device physics of high-efficiency solar cells, especially of single-junction and multi-junction solar cells. The development of large-area solar cell modules using single and multi-junction solar cells is also considered. Examples of recent photovoltaic systems are presented and analysed.
Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'. Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, but also investigate the ways in which photovoltaics can be integrated into the design and creation of buildings equipped for the demands of the 21st century. The potential for BiPV, in both buildings and other structures, is explored together with broader issues such as market deployment, and international marketing and government strategies. In addition, more than 20 contemporary international case studies describe in detail how building-integrated photovoltaics have been applied to new and existing buildings, and discuss the architectural and technical quality, and the success of various strategies. Packed with photographs and illustrations, this book is an invaluable companion for architects, builders, designers, engineers, students and all involved with the exciting possibilities of building-integrated photovoltaics.
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on-off and/or high power-low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. The first part of the book begins with a historical overview of electromobility and the related environmental impacts motivating the development of the electric powertrain. Vehicular requirements for electromechanical propulsion are then presented. Battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and conventional and hybrid electric vehicles (HEV) are then described, contrasted and compared for vehicle propulsion. The second part of the book features in-depth analysis of the electric powertrain traction machines, with a particular focus on the induction machine and the surface- and interior-permanent magnet ac machines. The brushed dc machine is also considered due to its ease of operation and understanding, and its historical place, especially as the traction machine on NASA's Mars rovers. The third part of the book features the theory and applications for the propulsion, charging, accessory, and auxiliary power electronics converters. Chapters are presented on isolated and non-isolated dc-dc converters, traction inverters, and battery charging. The fourth part presents the introductory and applied electromagnetism required as a foundation throughout the book. - Introduces and holistically integrates the key EV powertrain technologies. - Provides a comprehensive overview of existing and emerging automotive solutions. - Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. - Presents many examples of powertrain technologies from leading manufacturers. - Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. - Investigates the environmental motivating factors and impacts of electromobility. - Presents a structured university teaching stream from introductory undergraduate to postgraduate. - Includes real-world problems and assignments of use to design engineers, researchers, and students alike. - Features a companion website with numerous references, problems, solutions, and practical assignments. - Includes introductory material throughout the book for the general scientific reader. - Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The book is a structured holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students. Textbook Structure and Suggested Teaching Curriculum This is primarily an engineering textbook covering the automotive powertrain, energy storage and energy conversion, power electronics, and electrical machines. A significant additional focus is placed on the engineering design, the energy for transportation, and the related environmental impacts. This textbook is an educational tool for practicing engineers and others, such as transportation policy planners and regulators. The modern automobile is used as the vehicle upon which to base the theory and applications, which makes the book a useful educational reference for our industry colleagues, from chemists to engineers. This material is also written to be of interest to the general reader, who may have little or no interest in the power electronics and machines. Introductory science, mathematics, and an inquiring mind suffice for some chapters. The general reader can read the introduction to each of the chapters and move to the next as soon as the material gets too advanced for him or her. Part I Vehicles and Energy Sources Chapter 1 Electromobility and the Environment Chapter 2 Vehicle Dynamics Chapter 3 Batteries Chapter 4 Fuel Cells Chapter 5 Conventional and Hybrid Powertrains Part II Electrical Machines Chapter 6 Introduction to Traction Machines Chapter 7 The Brushed DC Machine Chapter 8 Induction Machines Chapter 9 Surface-permanent-magnet AC Machines Chapter 10: Interior-permanent-magnet AC Machines Part III Power Electronics Chapter 11 DC-DC Converters Chapter 12 Isolated DC-DC Converters Chapter 13 Traction Drives and Three-phase Inverters Chapter 14 Battery Charging Chapter 15 Control of the Electric Drive Part IV Basics Chapter 16 Introduction to Electromagnetism, Ferromagnetism, and Electromechanical Energy Conversion The first third of the book (Chapters 1 to 6), plus parts of Chapters 14 and 16, can be taught to the general science or engineering student in the second or third year. It covers the introductory automotive material using basic concepts from mechanical, electrical, environmental, and electrochemical engineering. Chapter 14 on electrical charging and Chapter 16 on electromagnetism can also be used as a general introduction to electrical engineering. The basics of electromagnetism, ferromagnetism and electromechanical energy conversion (Chapter 16) and dc machines (Chapter 7) can be taught to second year (sophomore) engineering students who have completed introductory electrical circuits and physics. The third year (junior) students typically have covered ac circuit analysis, and so they can cover ac machines, such as the induction machine (Chapter 8) and the surface permanent-magnet ac machine (Chapter 9). As the students typically have studied control theory, they can investigate the control of the speed and torque loops of the motor drive (Chapter 15). Power electronics, featuring non-isolated buck and boost converters (Chapter 11), can also be introduced in the third year. The final-year (senior) students can then go on to cover the more advanced technologies of the interior-permanent-magnet ac machine (Chapter 10). Isolated power converters (Chapter 12), such as the full-bridge and resonant converters, inverters (Chapter 13), and power-factor-corrected battery chargers (Chapter 14), are covered in the power electronics section. This material can also be covered at the introductory postgraduate level. Various homework, simulation, and research exercises are presented throughout the textbook. The reader is encouraged to attempt these exercises as part of the learning experience. Instructors are encouraged to contact the author, John Hayes, direct to discuss course content or structure.
This book analyzes the economic and technical effects of demand response programs in smart grids. A variety of operational and financial benefits are offered by demand response programs (DRPs) for load-serving entities, grid operators, and electricity consumers. The most notable advantages of DRPs are presented in this book, including decreased electricity prices, risk management, market power mitigation, and flexibility of market operations. In-depth chapters discuss the integration of demand response programs for the planning and operation of smart grids and explore the uncertainties of market prices, renewable resources and intermittent load management, making this a useful reference for a variety of different organizations and players in the electricity market, such as reliability organizations, distribution companies, transmission companies, and electric end-users.
"…warmly recommended as a comprehensive, introductory text on a subject which should become increasingly important." (Review of the First Edition in Contemporary Physics) The rapid evolution of photovoltaic technology has highlighted the increasing capabilities of solar electricity as a power source for distributed energy generation. Building on the success of the first edition, Solar Electricity presents a balanced introduction to all aspects of solar energy conversion, from cell types to environmental impact and applications. Now fully revised to incorporate the latest industry achievements and featuring: New sections on the role of dye sensitised solar cells, photovoltaics in buildings, diesel hybrid systems, and photovoltaic markets and funding. Solar cell design and manufacturing technology including crystalline silicon and thin film devices. Introduction to a range of photovoltaic applications including rural electrification, grid connection issues, and the supply of electrical power to satellites in space. Illustrative case studies and self-assessment questions and answers at the end of each chapter. Undergraduate and postgraduate science and engineering students, practising mechanical and power engineers and those with a general interest in renewable energy will find this comprehensive text on invaluable reference. Solar Electricity, Second Edition forms part of the Energy Engineering Learning Package. Organised by UNESCO, this distance learning package has been established to train engineers to meet the challengs of today and tomorrow in this exciting field of energy engineering. It has been developed by an international team of distinguished academics, coordinated by Dr Boris Berkovski. This modular course will appeal to advanced undergraduates and post graduate students, as well as practising power engineers in industry. World Solar Summit Process Visit Our Web Page! http://www.wiley.com/
Including chemical, synthetic, and cross-disciplinary approaches; this book includes the necessary techniques and technologies to help readers better understand polymers for polymer electrolyte membrane (PEM) fuel cells. The methods in the book are essential to researchers and scientists in the field and will lead to further development in polymer and fuel cell technologies.- Provides complete, essential, and comprehensive overview of polymer applications for PEM fuel cells- Emphasizes state-of-the-art developments and methods, like PEMs for novel fuel cells and polymers for fuel cell catalysts- Includes detailed chapters on major topics, like PEM for direct liquid fuel cells and fluoropolymers and non-fluorinated polymers for PEM- Has relevance to a range of industries - like polymer engineering, materials, and green technology - involved with fuel cell technologies and R&D |
You may like...
Porous Rock Fracture Mechanics - with…
Amir Shojaei, Jian-Fu Shao
Hardcover
R5,170
Discovery Miles 51 700
Geotechnical Hazards from Large…
Hemanta Hazarika, Motoki Kazama, …
Hardcover
R5,324
Discovery Miles 53 240
Multiple Instance Learning - Foundations…
Francisco Herrera, Sebastian Ventura, …
Hardcover
R2,669
Discovery Miles 26 690
Seismic Behaviour and Design of…
Oren Lavan, Mario De Stefano
Hardcover
R4,073
Discovery Miles 40 730
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R6,648
Discovery Miles 66 480
Machine Learning for Sustainable…
Kamal Kant Hiran, Deepak Khazanchi, …
Hardcover
R3,939
Discovery Miles 39 390
Adversarial Robustness for Machine…
Pin-Yu Chen, Cho-Jui Hsieh
Paperback
R2,204
Discovery Miles 22 040
|