![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > General
This book "Preservation in Digital Cartography: Archiving Aspects" should give an overview on how to preserve digital cartographic appli- tions and geospatial data in a sustainable way. The intention of this book is to shape the opinion of affected parties and to bring together various d- ciplines. Therefore adjacent chapters will generally deal with information technologies, Service-Oriented Architectures, cybercartography, reprod- tion and historic cartography, which all together can be subsumed in p- spective cartographic heritage. The survival of this digital cartographic heritage will base on long-term preservation strategies that make use of - tensive dissemination on the one hand and sustainable digital archiving methods on the other. This includes a massive development of paradigm that expands from "store-and-save" to "keep-it-online." The paradigm "store-and-save" is mainly used for analogue masters that consist of st- age media, like vellum, and their visible content. Avoiding the storage - dia from degeneration in climate-controlled areas will help to keep the content accessible. In the digital domain the high interdependency of st- age media, format, device and applications leads to the paradigm "keep-- online" which for example describes the migration to new storage devices. In fact this expansion of paradigm means that the digital domain calls for ongoing actions in order to preserve cartography for a long term.
First published in 1967, this book explores the theme of geographical generalization, or model building. It is composed of eight of the chapters from the original Models in Geography, published in 1967. The first chapter broadly outlines geographical generalization and examines the nature and function of generalized statements, ranging from conceptual models to scale models, in a geographical context. The following chapter deals with model theory in a wider scientific framework and the rest of the book discusses models of physical systems and information models. The book considers model-type generalizations that are applied in the three fields of geomorphology, meteorology and climatology, and hydrology before focusing on the transference of information and ideas in geography. This text represents a robustly anti-idiographic statement of modern work in one of the major branches of geography.
This book presents flight mechanics of aircraft, spacecraft, and rockets to technical and non-technical readers in simple terms and based purely on physical principles. Adapting an accessible and lucid writing style, the book retains the scientific authority and conceptual substance of an engineering textbook without requiring a background in physics or engineering mathematics. Professor Tewari explains relevant physical principles of flight by straightforward examples and meticulous diagrams and figures. Important aspects of both atmospheric and space flight mechanics are covered, including performance, stability and control, aeroelasticity, orbital mechanics, and altitude control. The book describes airplanes, gliders, rotary wing and flapping wing flight vehicles, rockets, and spacecraft and visualizes the essential principles using detailed illustration. It is an ideal resource for managers and technicians in the aerospace industry without engineering degrees, pilots, and anyone interested in the mechanics of flight.
The Earth's atmosphere is often portrayed as a thin and finite blanket covering our planet, separate from the emptiness of outer space. In reality, the transition is gradual and a tiny fraction of the atmophere gases is still present at the altitude of low orbiting satellites. The very high velocities of these satellites ensure that their orbital motion can still be considerably affected by air density and wind. This influence can be measured using accelerometers and satellite tracking techniques. The opening chapters of this thesis provide an excellent introduction to the various disciplines that are involved in the interpretation of these observations: orbital mechanics, satellite aerodynamics and upper atmospheric physics. A subsequent chapter, at the heart of this work, covers advances in the algorithms used for processing satellite accelerometry and Two-Line Element (TLE) orbit data. The closing chapters provide an elaborate analysis of the resulting density and wind products, which are generating many opportunities for further research, to improve the modelling and understanding of the thermosphere system and its interactions with the lower atmosphere, the ionosphere-magnetosphere system and the Sun.
Remote Sensing from a New Perspective The idea for this book began many years ago, when I was asked to teach a course on remote sensing. Not long before that time, I had been part of the effort to develop the first database for planetary data with a common digital array format and interactive processing capabilities to correlate those data easily: the lunar consortium. All the available lunar remote sensing data were included, orbital and ground-based, ranging across the entire electromagnetic spectrum. I had used this powerful tool extensively, and, in that spirit, I was determined to create a course which covered the entire spectrum and a variety of targets. As I looked around for the equivalent of a textbook, which I was willing to pull together from several sources, I realized that available material was very heavily focused on the visual and near visual spectrum and on the Earth as a target. Even The Surveillant Science, edited by Edward Holz and published in 1973, which broke new ground in having diverse articles on most of the spectrum when it was created, focused entirely on the Earth. My personal favorite, the exceedingly well written book on remote sensing by Floyd Sabins first published in 1978, covered the visual, infrared, and microwave portions of the spectrum beautifully but focused on the Earth as well. Unhindered, I developed what I called 'packets' of material for each part of the spectrum.
This book describes origin and characteristics of the Earth's thermal field, thermal flow propagation and some thermal phenomena in the Earth. Description of thermal properties of rocks and methods of thermal field measurements in boreholes, underground, at near-surface conditions enables to understand the principles of temperature field acquisition and geothermal model development. Processing and interpretation of geothermal data are shown on numerous field examples from different regions of the world. The book warps, for instance, such fields as analysis of thermal regime of the Earth's crust, evolution and thermodynamic conditions of the magma-ocean and early Earth atmosphere, thermal properties of permafrost, thermal waters, geysers and mud volcanoes, methods of Curie discontinuity construction, quantitative interpretation of thermal anomalies, examination of some nonlinear effects, and integration of geothermal data with other geophysical methods. This book is intended for students and researchers in the field of Earth Sciences and Environment studying thermal processes in the Earth and in the subsurface. It will be useful for specialists applying thermal field analysis in petroleum, water and ore geophysics, environmental and ecological studies, archaeological prospection and climate of the past.
Life has shaped the Earth, and the Earth has moulded the history of life. That history, the co-evolution of our ancestors and their horne, has much to teach us about our place on the planet today. We are part of the fabric of the biosphere. As we change that fabric we would be wise to understand how our horne was built. Our planet is neither a hotel nor a colony. It is not a place which life briefly inhabits during a transient occupation. Instead, it is our horne, designed by the deeds of our ancestors and suited to our own needs. The history of life on Earth is held in the geological record, which is composed of the rocks, water and air that are available for study on the planet's surface. These rocks, the oceans and the atmosphere are not simply stores of information for the excitement of fossil hunters and geochemists, or resources to exploit without thought. Their cre ation and continued existence form an integral part of the development and management of the Earth as the horne of life."
From the Foreword: The chief aim of this book is to present the reader with an integrated system of methods dealing with geographical statistics (geostatistics') and their applications. It sums up developments based on the vast experience accumulated by Professor Bachi over several decades of research. Interest in the quantitative locational aspects of geography and in the common ground of geography and statistics has grown rapidly, involving an ever-increasing spectrum of scientific disciplines ... the present volume will fill a genuine need - as a textbook, as a reference work, and as a practical aid for geographers, applied statisticians, demographers, ecologists, regional planners, economists, professional staff of official statistical agencies, and others.' - E. Peritz, G. Nathan, N. Kadmon.
The book introduces the topic of geochemical modeling of fluids in subsurface and hydrothermal systems. The intention is to serve as a textbook for graduate students in aqueous, environmental and groundwater geochemistry, despite the fact that its focus is on the special topic of geochemistry in hydrothermal systems, it also provides new insights for experienced researchers with respect to the topic of reactive transport. The overall purpose is to give the reader an understanding of the processes that control the chemical composition of waters in hydrothermal systems and to highlight the interfaces between chemistry, geothermics and hydrogeology. From the reviews: .."is a nice, compact introduction to the principles of modeling coupled fluid flow and fluid-mineral reactions in active geothermal systems, as used for heating and electricity generation." ( Christoph A. Heinrich, ECONOMIC GEOLOGY, June 2004)
The over-enrichment of surface water bodies with phosphorus compounds can lead to eutrophication resulting in reduced photosynthetic activity, oxygen depletion, production of toxic compounds and, ultimately, loss of plant and animal species. Due to relatively high removal efficiency, economy and environmentally-friendly operation, enhanced biological phosphorus removal (EBPR) in activated sludge wastewater treatment systems is a popular technology to control and prevent eutrophication in surface water bodies. EBPR can be implemented by promoting the enrichment of the system with polyphosphate-accumulating organisms (PAO). However, EBPR process may suffer of instability and unreliability experiencing process upsets, deterioration and even failure. Among other factors, the appearance of glycogen-accumulating organisms (GAO), which compete with PAO, has been hypothesized to be the main cause of deterioration of the EBPR process performance. In this research, the effects of key environmental and operating conditions influencing the PAO-GAO competition were addressed through undertaking different studies at both lab- and full-scale and by applying mathematical modelling. It contributes to get a better understanding about the factors affecting the PAO-GAO competition and, thus, the stability and reliability of the EBPR process in activated sludge systems. The findings obtained in this research may prove useful towards optimization of full-scale EBPR plants.
This monograph provides, for the first time, a most comprehensive statistical account of composite sampling as an ingenious environmental sampling method to help accomplish observational economy in a variety of environmental and ecological studies. Sampling consists of selection, acquisition, and quantification of a part of the population. But often what is desirable is not affordable, and what is affordable is not adequate. How do we deal with this dilemma? Operationally, composite sampling recognizes the distinction between selection, acquisition, and quantification. In certain applications, it is a common experience that the costs of selection and acquisition are not very high, but the cost of quantification, or measurement, is substantially high. In such situations, one may select a sample sufficiently large to satisfy the requirement of representativeness and precision and then, by combining several sampling units into composites, reduce the cost of measurement to an affordable level. Thus composite sampling offers an approach to deal with the classical dilemma of desirable versus affordable sample sizes, when conventional statistical methods fail to resolve the problem. Composite sampling, at least under idealized conditions, incurs no loss of information for estimating the population means. But an important limitation to the method has been the loss of information on individual sample values, such as the extremely large value. In many of the situations where individual sample values are of interest or concern, composite sampling methods can be suitably modified to retrieve the information on individual sample values that may be lost due to compositing. In this monograph, we present statistical solutions to these and other issues that arise in the context of applications of composite sampling. Content Level Research
Science Communication in a Crisis: An Insider's Guide identifies the principal challenges that scientists face when communicating with different stakeholder groups and offers advice on how to navigate the maze of competing interests and deliver actionable science when the clock is ticking. If a scientist's goal is to deliver content and expertise to the people who need it, then other stakeholder groups-the media, the government, industry-need to be considered as partners to collaborate with in order to solve problems. Written by established scientist Christopher M. Reddy, who has been on the front lines of several environmental crisis events, the book highlights ten specific challenges and reflects on mistakes made and lessons learned. Reddy's aim is not to teach scientists how to ace an interview or craft a sound bite. Rather, through exploring several high-profile case studies, including the North Cape oil spill, Deepwater Horizon, and the 2021 Sri Lanka shipping disaster, he presents a clear pathway to effective and collaborative communication. This book will be a great resource for junior and established scientists who want to make an impact, as well as students in courses such as environmental and science communication.
This volume of the Handbook illustrates the rich variety of topics covered by rare earth science. Three chapters are devoted to the description of solid state compounds: skutterudites (Chapter 211), rare earth -antimony systems (Chapter 212), and rare earth-manganese perovskites (Chapter 214). Two other reviews deal with solid state properties: one contribution includes information on existing thermodynamic data of lanthanide trihalides (Chapter 213) while the other one describes optical properties of rare earth compounds under pressure (Chapter 217). Finally, two chapters focus on solution chemistry. The state of the art in unraveling solution structure of lanthanide-containing coordination compounds by paramagnetic nuclear magnetic resonance is outlined in Chapter 215. The potential of time-resolved, laser-induced emission spectroscopy for the analysis of lanthanide and actinide solutions is presented and critically discussed in Chapter 216.
The focal main objective of the book is to constitute a meaningful linkage among research problems, geoinformation methods and corresponding applications. The research goals, related both to theoretical and practical issues, derive from multidisciplinary fields such as archaeology, history, geography, landscape planning, environment, geoinformation science, geology and geomorphology. All the aforementioned scientific areas have the spatial dimension in common, i.e. the vast amount of spatially referenced data. Their research issues can be addressed and analysed with geoinformation technology; though, the researchers should get familiar to the range of available geoinformation methods. The book provides description of a variety of research problems issues and technological ?solutions?approaches that can be used to support processes of data capturing, mapping and analysis. These techniques and concepts are illustrated on numerous practical examples. along with specific examples, where these have been applied. The current structure of the book includes the following four chapters: introduction, data capturing and mapping, analysis and modelling, and study cases. In the following we provide a more detailed content of each chapter listing the main topics included within the selected articles.
Once applied only to problems of mining-reserves assessment or petroleum-reservoir characterization, geostatistics is now being used in an increasingly large number of disciplines in environmental sciences. On the one hand, it enables the analysis and handling, in a rigorous probabilistic framework of the issues of spatial and temporal interpolation of continuous or categorical environmental variables. On the other hand, the methodology is also used to design and optimize sampling campaigns. "Geostatistics for Environmental Applications" contains forty selected contributions covering the latest progress in a broad spectrum of fields including air quality, climatology, ecology, groundwater hydrology, surface hydrology, oceanography, soil contamination, epidemiology and health, natural hazards, and remote sensing.
It is with pleasure that I write the foreword to this excellent book. A wide range of observations in geology and solid-earth geophysics can be - plained in terms of fractal distributions. In this volume a collection of - pers considers the fractal behavior of the Earth's continental crust. The book begins with an excellent introductory chapter by the editor Dr. V.P. Dimri. Surface gravity anomalies are known to exhibit power-law spectral behavior under a wide range of conditions and scales. This is self-affine fractal behavior. Explanations of this behavior remain controversial. In chapter 2 V.P. Dimri and R.P. Srivastava model this behavior using Voronoi tessellations. Another approach to understanding the structure of the continental crust is to use electromagnetic induction experiments. Again the results often exhibit power law spectral behavior. In chapter 3 K. Bahr uses a fractal based random resister network model to explain the observations. Other examples of power-law spectral observations come from a wide range of well logs using various logging tools. In chapter 4 M. Fedi, D. Fiore, and M. La Manna utilize multifractal models to explain the behavior of well logs from the main KTB borehole in Germany. In chapter 5 V.V. Surkov and H. Tanaka model the electrokinetic currents that may be as- ciated with seismic electric signals using a fractal porous media. In chapter 6 M. Pervukhina, Y. Kuwahara, and H. Ito use fractal n- works to correlate the elastic and electrical properties of porous media.
Porous media are ubiquitous throughout nature and in many modern technologies. Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. This text is an outgrowth of a two-semester graduate course on multiscale porous media offered to students in applied math, physics, chemistry, engineering (civil, chemical, mechanical, agricultural), and environmental and soil science. The text is largely based on Dr Cushmans' groups efforts to build a rational approach to studying porous media over a hierarchy of spatial and temporal scales. No other text covers porous media on scales ranging from angstroms to miles. Nor does any other text develop and use such a diversity of tools for their study. The text is designed to be self-contained, as it presents all relevant mathematical and physical constructs.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science, held in 2010 in Guimaraes, Portugal, under the title "Geospatial Thinking." The efficient use of geospatial information and related technologies assumes the knowledge of concepts that are fundamental components of Geospatial Thinking, which is built on reasoning processes, spatial conc- tualizations, and representation methods. Geospatial Thinking is associated with a set of cognitive skills consisting of several forms of knowledge and cognitive operators used to transform, combine or, in any other way, act on that same knowledge. The scientific papers published in this volume cover an important set of topics within Geoinformation Science, including: Representation and Visualisation of Geographic Phenomena; Spatiotemporal Data Analysis; Geo-Collaboration, Participation, and Decision Support; Semantics of Geoinformation and Knowledge Discovery; Spatiotemporal Modelling and Reasoning; and Web Services, Geospatial Systems and Real-time Appli- tions." |
You may like...
(Re)designing the Continuum of Care for…
Farhana Ferdous, Emily Roberts
Hardcover
R2,445
Discovery Miles 24 450
Croc & Pickle: Level 1 - Book 1-10
Jaco Jacobs, Nadia du Plessis
Paperback
|