![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > General
Along with the increasing deregulation of European utility markets the dynamics of and the competitive pressure in the utility industries have steadily increased over the last years. These changes in the regulatory framework towards an integrated market environment have resulted in new challenges for the management of power and gas companies and in a substantial need for strategic reorientation. In the context of these developments the Handbook Utility Management reflects current challenges in the utility industries and provides solutions from a managerial perspective. The inclusion of latest insights from top managers, renowned researchers, professionals in utility-related investment banking and consulting, and professionals in public and supranational organizations on all value chain activities within the industry makes the Handbook an indispensable asset for both professionals and researchers.
This book provides IT professionals, educators, researchers, and students a compendium of knowledge on smart sensors and devices, types of sensors, data analysis and monitoring with the help of smart sensors, decision making, impact of machine learning algorithms, and artificial intelligence-related methodologies for data analysis and understanding of smart applications in networks. Smart sensor networks play an important role in the establishment of network devices which can easily interact with physical world through plethora of variety of sensors for collecting and monitoring the surrounding context and allowing environment information. Apart from military applications, smart sensor networks are used in many civilian applications nowadays and there is a need to manage high volume of demands in related applications. This book comprises of 9 chapters and presents a valuable insight on the original research and review articles on the latest achievements that contributes to the field of smart sensor networks and their usage in real-life applications like smart city, smart home, e-healthcare, smart social sensing networks, etc. Chapters illustrate technological advances and trends, examine research opportunities, highlight best practices and standards, and discuss applications and adoption. Some chapters also provide holistic and multiple perspectives while examining the impact of smart sensor networks and the role of data analytics, data sharing, and its control along with future prospects.
"Principles of Solidification" offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: - Detailed mathematical examples throughout to guide readers - Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors - Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.
Refiners' efforts to conform to increasingly stringent laws and a preference for fuels derived from renewable sources have mandated changes in fluid cracking catalyst technology. Advances in Fluid Catalytic Cracking: Testing, Characterization, and Environmental Regulations explores recent advances and innovations in this important component of petroleum refining technology and evaluates how the industry has been changed by environmental regulations worldwide. Measurement, testing, and improvement Modern spectroscopic techniques continue to be essential to the understanding of catalyst performance and feedstock properties. The book contains a detailed review of the use of adsorption microcalorimetry to measure acidity, acid site density, and the strength of the strongest acid sites in heterogenous catalysts. It also discusses the use of 1H-NMR to characterize the properties of a FCCU feedstock. In addition, the book dedicates several chapters to pilot plant testing of catalysts and nontraditional feedstocks, maximizing and improving LCO (heating oil) production and quality, and improving FCCU operations. Complying with the EPA The EPA has identified the petroleum refining industry as a targeted enforcement area for the Clean Air Act (CAA) passed in 1970 and the CAA Amendments of 1990. The final chapters of the book examine the evolution of the EPA's attempts to encourage the refining industry to enter into voluntary consent decrees to comply with the CAA and the 1990 amendments. The book describes consent decree negotiations as well as FCC emissions (SOx, NOx, CO, PM) reduction technologies through consent decree implementations. Containing contributions from a panel of worldwide experts, the book demonstrates how the global shift toward environmentalism has engineered significant changes in the petroleum refining industry at a critical level.
What role will biofuels play in the scientific portfolio that might bring energy independence and security, revitalize rural infrastructures, and wean us off of our addiction to oil? The shifting energy landscape of the 21st century, with its increased demand for renewable energy technology, poses a worrying challenge. Discussing the multidisciplinary study of bioenergy and its potential for replacing fossil fuels in the coming decades, Introduction to Biofuels provides a roadmap for understanding the broad sweep of technological, sociological, and energy policy issues that intermingle and intertwine. Copiously illustrated and with numerous examples, this book explores key technologies, including biotechnology, bioprocessing, and genetic reprogramming of microorganisms. The author examines the future of biofuels from a broader perspective, addressing the economic, social, and environmental issues crucial for studying the sustainable development of bioenergy. Each chapter begins with questions and provides the answers later in the chapter as key informational points. Embedded Science, Technology, Engineering, and Math (STEM) sections provide detailed derivations and equations for a subset of topics that can be found easily as buzzwords in popular media and on web sites. Together, the STEM topics form a thread of essential technologies and a guide to how researchers have established quantitative parameters that are crucial to the ever-growing biofuels database. With so much information scattered throughout the literature, it is often difficult to make sense of what is real and what is an optimistic selling of ideas with no scientific credibility. This book does an excellent job of filtering through volumes of data, providing a historical perspective on which to anchor the information, and outlining the strengths and constraints of the different biofuels.
Discusses the modeling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises.
The handbook, for convenient use, is divided into eight main units: (1) The Solar Resource; (2) Solar Thermal Collectors; (3) Photovoltaics; (4) Bioconversion; (5) Wind Energy; (6) Solar Energy Storage Systems; (7) Applications of Solar Energy; (8) Non-technical Issues. In addition there are three Appendixes containing unit-conversion tables and useful solar data. It became obvious early in this project that if proper coverage were to be given each of these areas it would be necessary to divide the handbook into two volumes. The first six units constitute Part A, Engineering Fundamentals and the last two units constitute Part B, Applications, Systems Design, and Economics. These volumes have been prepared primarily as reference books, but it is felt that many of the sections will prove useful for practicing engineers, scientists and students.
Oxy-fuel Combustion: Fundamentals, Theory and Practice provides a comprehensive review of various aspects of oxy-fuel combustion technology, including its concept, fundamental theory, pilot practice, large-scale feasibility studies and related practical issues, such as the commissioning and operation of an oxy-fuel combustion plant. Oxy-fuel combustion, as the most practical large-scale carbon capture power generation technology, has attracted significant attention in the past two decades. As significant progress has been achieved in worldwide demonstration and the oxy-combustion concept confirmed by Schwartze Pump, CUIDEN, Callide, Ponferrada and Yingcheng projects in the past five years, this book provides a timely addition for discussion and study.
Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End Products compiles contributions from authors from different areas and backgrounds who explore the cultivation and utilization of microalgae biomass for sustainable fuels and chemicals. With a strong focus in emerging industrial and large scale applications, the book summarizes the new achievements in recent years in this field by critically evaluating developments in the field of algal biotechnology, whilst taking into account sustainability issues and techno-economic parameters. It includes information on microalgae cultivation, harvesting, and conversion processes for the production of liquid and gaseous biofuels, such as biogas, bioethanol, biodiesel and biohydrogen. Microalgae biorefinery and biotechnology applications, including for pharmaceuticals, its use as food and feed, and value added bioproducts are also covered. This book's comprehensive scope makes it an ideal reference for both early stage and consolidated researchers, engineers and graduate students in the algal field, especially in energy, chemical and environmental engineering, biotechnology, biology and agriculture.
Widely used for power generation, gas turbine engines are susceptible to faults due to the harsh working environment. Most engine problems are preceded by a sharp change in measurement deviations compared to a baseline engine, but the trend data of these deviations over time are contaminated with noise and non-Gaussian outliers. Gas Turbine Diagnostics: Signal Processing and Fault Isolation presents signal processing algorithms to improve fault diagnosis in gas turbine engines, particularly jet engines. The algorithms focus on removing noise and outliers while keeping the key signal features that may indicate a fault. The book brings together recent methods in data filtering, trend shift detection, and fault isolation, including several novel approaches proposed by the author. Each method is demonstrated through numerical simulations that can be easily performed by the reader. Coverage includes: Filters for gas turbines with slow data availability Hybrid filters for engines equipped with faster data monitoring systems Nonlinear myriad filters for cases where monitoring of transient data can lead to better fault detection Innovative nonlinear filters for data cleaning developed using optimization methods An edge detector based on gradient and Laplacian calculations A process of automating fault isolation using a bank of Kalman filters, fuzzy logic systems, neural networks, and genetic fuzzy systems when an engine model is available An example of vibration-based diagnostics for turbine blades to complement the performance-based methods Using simple examples, the book describes new research tools to more effectively isolate faults in gas turbine engines. These algorithms may also be useful for condition and health monitoring in other systems where sharp changes in measurement data indicate the onset of a fault.
As mankind searches for energy alternatives with minimal environmental consequences and acceptable cost, it is necessary to identify valid areas of endeavor that can activate favorable energy sources and technological developments. Toward that end, The Dynamics of Energy: Supply, Conversion, and Utilization develops competence in energy matters on three levels: basic concepts, essential computations, and dynamic modeling. The book reviews the laws of thermodynamics and rate relationships between flows and gradients as a foundation for subsequent topics. Using dynamic analysis, it examines the potential of current energy sources to serve the needs of a growing world economy. The text also describes key fossil conversion, renewable conversion, and utilization technologies. It presents a technique to assess efficiencies from ground (or harvest) to end use, explores the effects of energy use on the environment, and offers an introduction to dynamic modeling. The book concludes with a description of energy technologies that, if suitably employed, could configure a sustainable energy future. Studying the dynamics of thermal systems is conducive to ascertaining what technologies could indeed make a difference for a desirable energy future. Suitable response time to demand and acceptable fuel lifetimes are necessary conditions for energy systems to compete in the marketplace. The planning effort that should lead the energy endeavor requires projection of the time span of pollution effects. Harnessing the flexibility and speed of VisSim (TM) for dynamic modeling, this book provides the tools to model most thermal systems with moderate complexity. It also evaluates energy supplies, conversion, and end use.
Carbon materials play a significant role in the development of alternative clean and sustainable energy technologies. This new volume focuses on the new applications of different carbon nanomaterials and graphene-carbon-nanotube hybrids for energy generation, energy storage, and energy conversion. It presents a comprehensive overview of recent developments on carbon-based nanomaterials with a focus on sustainable and clean energy applications. With chapters written by the leading academicians and researchers working in the field, the volume explores state-of-the-art developments using both commercially available and emerging materials and their potential applications for energy storage and energy harvesting.
Advances in Industrial Heat Transfer presents the basic principles of industrial heat transfer enhancement. Serving as a reference and guide for future research, this book presents a complete approach, from redesigning equipment to the use of nanofluids in industry. Based on the latest methods of the experiment and their interpretation, this book presents a unified conception of the industrial heat transfer process and procedures which will help decrease global energy consumption. Containing both theoretical and practical results, the book uses text, pictures, graphs, and definitions to illustrate points and highlight concepts.
Incorporates Worked-Out Real-World Problems Steam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel ideas for improving boiler efficiency and lowering gas pressure drop. It helps plant engineers understand and evaluate the performance of steam generators and waste heat boilers at any load. Learn How to Independently Evaluate the Thermal Performance of Boilers and Their Components This book begins with basic combustion and boiler efficiency calculations. It then moves on to estimation of furnace exit gas temperature (FEGT), furnace duty, view factors, heat flux, and boiler circulation calculations. It also describes trends in large steam generator designs such as multiple-module; elevated drum design types of boilers such as D, O, and A; and forced circulation steam generators. It illustrates various options to improve boiler efficiency and lower operating costs. The author addresses the importance of flue gas analysis, fire tube versus water tube boilers used in chemical plants, and refineries. In addition, he describes cogeneration systems; heat recovery in sulfur plants, hydrogen plants, and cement plants; and the effect of fouling factor on performance. The book also explains HRSG simulation process and illustrates calculations for complete performance evaluation of boilers and their components. Helps plant engineers make independent evaluations of thermal performance of boilers before purchasing them Provides numerous examples on boiler thermal performance calculations that help plant engineers develop programming codes with ease Follows the metric and SI system, and British units are shown in parentheses wherever possible Includes calculation procedures for the basic sizing and performance evaluation of a complete steam generator or waste heat boiler system and their components with appendices outlining simplified procedures for estimation of heat transfer coefficients Steam Generators and Waste Heat Boilers: For Process and Plant Engineers serves as a source book for plant engineers, consultants, and boiler designers.
Uncover the Technology behind Hybrids and Make an Intelligent Decision When Purchasing Your Next Vehicle With one billion cars expected to be on the roads of the world in the near future, the potential for war over oil and the negative environmental effects of emissions will be greater than ever before. Now is the time to seriously consider an alternative to standard automobiles. Exploring practical solutions to these problems, Hybrid Vehicles and the Future of Personal Transportation provides broad coverage of the technologies involved in manufacturing and operating hybrids. It reviews key components of hybrid and pure electric vehicles, including batteries, fuel cells, and ultracapacitors. The book also discusses both concept and production-bound hybrids as well as the economics and safety issues of hybrid ownership. In addition, the author supplies effective tips on how to save gasoline with conventional and hybrid automobiles. Making the jargon of fuel-efficient vehicles accessible to a wide audience, this guide explains the history of hybrids, how they work, and their impact on the environment. It will help you make a sound decision concerning the purchase and operation of a hybrid or electric vehicle.
This book features selected papers presented at the 16th International Conference on Electromechanics and Robotics 'Zavalishin's Readings' - ER(ZR) 2021, held in St. Petersburg, Russia, on April 14-17, 2021. The contributions, written by professionals, researchers and students, cover topics in the field of automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation and vibration technologies. The Zavalishin's Readings conference was established as a tribute to the memory of Dmitry Aleksandrovich Zavalishin (1900-1968) - a Russian scientist, corresponding member of the USSR Academy of Sciences, and founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics at the Saint Petersburg State University of Aerospace Instrumentation in 2006. The 2021 conference was held with XV International Conference "Vibration-2021. Vibration technologies, mechatronics and controlled machines" and VI International Conference "Electric drive, electrical technology and electrical equipment of enterprises", and was organized by St. Petersburg State University of Aerospace Instrumentation (SUAI), St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Southwest State University (SWSU) and Ufa State Oil Technical University (USPTU).
Bringing together prominent scholars from a variety of disciplines, "Communicative Practices in Workplaces and the Professions: Cultural Perspectives on the Regulation of Discourse and Organizations" offers readers an engaging set of essays on the complicated relationship between discourse and the many institutions within which people act. Each author brings a unique theoretical perspective to conceptualizing how discourse is regulated and how it regulates when human activity is organized for such purposes as work or belonging to a profession. Together, the contributors to this collection offer a provocatively complex picture of what regulation means and the means of regulation.
This book serves as an introductory reference guide for those studying the application of models in energy systems. The book opens with a taxonomy of energy models and treatment of descriptive and analytical models, providing the reader with a foundation of the basic principles underlying the energy models and positioning these principles in the context of energy system studies. In turn, the book provides valuable insights into the varied applications of different energy models to answer complex questions, including those concerning specific aspects of energy policy measures dealing with issues of supply and demand. Case studies are provided in all of the chapters, offering real-world examples of how existing models fit the classification methods outlined here. The book's remaining chapters address a broad range of principles and applications, taking the reader from the basic principles involved, to state-of-the-art energy production and consumption processes, using modeling and validation/illustration in case studies to do so. With its in-depth mathematical foundation, this book serves as a comprehensive collection of work on modeling energy systems and processes, taking inexperienced graduate students from the basics through to a high-level understanding of the modeling processes in question, while also providing professionals and academic researchers in the field of energy planning with an up-to-date reference guide covering the latest works.
Current changes to the energy market, as well as an ambition to achieve decarbonation and highly energy efficient systems, will lead to a fundamental change in the way in which energy systems are designed and managed. In particular, the growth of renewable and renewed energy will introduce a level of design and management complexity with a greater need for efficient energy storage. Beginning with the earliest methodologies (pinch), this book explores the methodology and tools necessary for the design of flexible energy efficient systems. In addition to studying the related literature, the author details original developments where exergy consumption is introduced as an objective function to minimize in mathematical programming models for both continuous and batch processes. Most of these developments were made in the Center for Energy Efficiency of Systems at Mines ParisTech and reported in PhD dissertations and published articles. The whole methodology is implemented in the open source CERES platform.
Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systems Discusses the history, development, design, and operation of gas microturbines Introduces the Evolutionary Algorithm for pollutant emissions and fuel consumption minimization Analyzes the power electronics for grid connection of natural gas microturbines Includes actual power quality measurements-graphical representations and numerical data-from a real system Contains 39 color figures Readers benefit from the clarity and practicality of Essentials of Natural Gas Microturbines, ultimately learning new techniques to increase electrical load efficiency, keep the environment cleaner, and improve equipment exploitation based on mathematical results.
Energy management training and solutions are not one size fits all. While some general methods apply, the metals industry has its own unique processes and environments for which a more tailored approach is necessary. Aimed at managers, engineers, and supervisors working in the metals industry, Energy Management for the Metals Industry offers specifics that can help readers in the metals field achieve energy savings for their companies. The book explains general energy management methods and offers approaches germane to the metals industry. It discusses the benefits and reasons for implementing an energy management program and the requirements necessary to begin one. The book covers defining and measuring performance, setting baselines, and benchmarking a plant and its processes. It also discusses analyzing data, identifying projects, improving processes, setting goals, and creating an action plan, while controlling and evaluating progress. Real-world examples highlight concepts and illustrate potential pitfalls.
HVAC Water Chillers and Cooling Towers: Fundamentals, Application, and Operation, Second Edition explores the major improvements in recent years to many chiller and cooling tower components that have resulted in improved performance and lower operating costs. This new edition looks at how climate change and "green" designs have significantly impacted the selection of refrigerants and the application of chilled water systems. It also discusses the expanded use of digital controls and variable frequency drives as well as the re-introduction of some older technologies, especially ammonia-based absorption cooling. The first half of the book focuses on water chillers and the second half addresses cooling towers. In both sections, the author includes the following material: Fundamentals-basic information about systems and equipment, including how they and their various components work Design and Application-equipment sizing, selection, and application; details of piping, control, and water treatment; and special considerations such as noise control, electrical service, fire protection, and energy efficiency Operations and Maintenance-commissioning and programmed maintenance of components and systems, with guidelines and recommended specifications for procurement This up-to-date book provides HVAC designers, building owners, operating and maintenance staff, architects, and mechanical contractors with definitive and practical guidance on the application, design, purchase, operation, and maintenance of water chillers and cooling towers. It offers helpful information for you to use on a daily basis, including checklists and troubleshooting guidelines.
'This book not only provides a fundamental technical background on black TiO2 and the synthesis of this material, it also covers state-of-the-art applications and will provide the reader with current information on property behavior and show the direction of the latest research for this interesting material for energy applications.'IEEE Electrical Insulation MagazineThe transformation of titanium dioxide (TiO2) nanomaterials from white to black using disorder engineering has meant a dramatic increase in their performance in photocatalytic experiments. The efficiency with which black TiO2 nanomaterials can use sunlight to split water molecules for the production of hydrogen is significantly improved compared to using white crystals, and this pure hydrogen can then be used in batteries and fuels. The black TiO2 nanomaterials are also very promising in CO2 conversion, water treatment, and in air quality control.This book aims to present the recent progress on the research of black TiO2 nanomaterials, and how they can be used in a number of clean energy applications. The text covers a number of research topics, including the synthesis of black TiO2 nanomaterials (nanoparticles, nanowires and nanotubes) and their properties, the effect of point defects and ordered/disordered morphology, the applications in charge storage and photoelectrochemical water splitting, use in lithium ion batteries and in microwave absorption. Also included is a theoretical analysis of this research, thereby providing a comprehensive review of the subject for students, researchers and practitioners in catalytic science, materials science, nanotechnology, green technology, and chemistry.
Buildings with load-bearing earth walls were once widespread throughout Britain and many thousands still survive, including some dating from the fourteenth and fifteenth centuries. Earth is the ultimate form of 'green' building construction, creating no environmental pollutions and consuming virtually no energy. Subsoil can be dug from or near the site to construct buildings that will meet modern needs and conform to the latest building regulations. This book describes all aspects of earth building, explaining how earth performs as a building material and providing guidance on how best to repair and conserve existing earth buildings. |
You may like...
Fundamentals of Low Emission Flameless…
Seyed Ehsan Hosseini
Paperback
R4,663
Discovery Miles 46 630
Fluorine-Related Nanoscience with Energy…
Donna Nelson, Christohpher Brammer
Hardcover
R2,724
Discovery Miles 27 240
Design, Analysis and Applications of…
Ahmad Taher Azar, Nashwa Ahmad Kamal
Paperback
R3,693
Discovery Miles 36 930
|