Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Medicine > Pre-clinical medicine: basic sciences > Physiology > General
From the 40th annual conference of the International Society on Oxygen Transport to Tissue (ISOTT), held in Bruges, Belgium in August 2012, this volume covers aspects of clinical applications, muscle oxygenation, cancer, measurement technologies, oxygen transport modelling and Near-Infrared Spectroscopy (NIRS), cell metabolism and brain oxygenation. Each topic was presented by one or two invited speakers, and a series of contributed talks.
RNA technologies are the driving forces of modern medicine and biotechnology. They combine the fields of biochemistry, chemistry, molecular biology, cell biology, physics, nanotechnology and bioinformatics. The combination of these topics is set to revolutionize the medicine of tomorrow. After more than 15 years of extensive research in the field of RNA technologies, the first therapeutics are ready to reach the first patients. Thus we are witnessing the birth of a very exciting time in the development of molecular medicine, which will be based on the methods of RNA technologies. This volume is the first of a series. It covers various aspects of RNA interference and microRNAs, although antisense RNA applications, hammerhead ribozyme structure and function as well as non-coding RNAs are also discussed. The authors are internationally highly respected experts in the field of RNA technologies.
In today's world, three great classes of non-infectious diseases - the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders - have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular signaling web operates properly in health and improperly in disease. The stability of the health- and disease-associated states is dynamic and supported by multiple feedback loops acting positively and negatively along with linkages between pathways. During the past few years an ongoing series of important discoveries have been made that advance our understanding of how the body works and may guide us on how to better deal with these diseases. These include the discovery of chronic inflammation as a causal factor in all of these disease classes, the appearance of reactive oxygen species as a messenger molecule that can act both positively and negatively, the propensity of proteins to misfold into aggregation- and disease-prone forms, and the rise of epigenetics including the emergence of small non-coding RNA with important regulatory functions out of the so-called junk RNA. Chapters are devoted to each of these classes of findings with additional details integrated into the chapters dealing directly with the diseases. The connections responsible for maintaining stability are explored in depth.
Topics covered in this volume include pheromone reception in mammals, elucidation of mammalian bitter taste, synaptic modulation in pain pathways, the vertebrate phototransduction cascade, and amplification and termination mechanisms.
Store-operated Ca2+ entry (SOCE) serves to control essential functions throughout the human body and represents a novel and attractive target for therapeutic intervention. This book provides an extensive overview of the role of SOCE pathways in Molecular Physiology and Cell Biology, as well as their clinical significance. (Patho)physiological principles and emerging therapeutic strategies are delineated in a way that is valuable both for the education of graduate students in advanced Cell Biology/Molecular Physiology and for the promotion of innovative research and developments in the clinical/therapeutic fields. A comprehensive, clear and elaborate representation of current concepts is provided, including a pathophysiological section arranged in a tissue/organ/system-oriented manner. The book is intended for basic researchers specializing in cell signaling, ion transport, or pharmacology, as well as biomedical scientists and clinicians with a focus on immunology, neurology or cardiology.
This edition of the companion volumes Muscle Pain: Understanding the Mech- isms and Muscle Pain: Diagnosis and Treatment is essential reading for those interested in clinical approaches to acute and chronic pain conditions involving muscle tissues and in the mechanisms underlying these conditions. The volumes cover a very important topic in pain medicine, since muscle pain is very common and can often be dif?cult to diagnose and treat effectively. Furthermore, chronic pain involving muscle and other components of the musculoskeletal system increases with age, such that it is a common complaint of those of us who are middle-aged or older. Indeed, as changing population demographics in "west- nized" countries result in higher proportions of the population living longer and being middle-aged and elderly, chronic muscle pain will likely become even more of a health problem. In the case of acute muscle pain, this can often be very intense, and in the short term can limit or modify the use of components of the musculoskeletal system associated with the sensitive muscle. Chronic muscle pain can also be intense, as well as unpleasant and disabling, and it is in many cases the over-riding symptom of most musculoskeletal disorders that are associated with long-term deleterious changes in musculoskeletal function.
Detection of Change: Event-Related Potential and fMRI Findings presents the first systematic overview of how event-related brain potential (ERP), cognitive electroencephalography (EEG), and functional magnetic imaging (fMRI) measures reflect the mental events arising from changes in sensory stimulation. Reviews by leading experts provide clarifying introductory background material that is well integrated with the cogently collated findings. Topics include the empirical and theoretical analysis of mismatch negativity, P300, human lesion studies, and stimulus binding. These areas provide the backdrop for summaries of auditory/visual ERP interactions, the conjoint use of fMRI methods, and neuroelectric processing models of attention and memory. The contents are fresh, the literature distillations highly informative, and the range of topics extremely useful. This book fills a major need by making contemporary results highly assessable to cognitive neuroscientists, psychologists, and researchers interested in the neural underpinnings of how the brain responds to stimulus change.
Dr. Elisabeth Bock (Photo Keenpress) This book contains review articles that produce a snapshot of recent developments in the field of the neural cell adhesion molecule NCAM. The chapters are grouped into sections reflecting various aspects of NCAM structure and function. The themes cover the structural basis of cell adhesion mediated by NCAM and NCAM interaction partners, NCAM-mediated signaling determinants of NCAM function under physiological conditions and in disease, and the therapeutic potential of NCAM mimetics. Section 1, "Structure and Ligands of NCAM," introduces the reader to the str- tural basis of NCAM-mediated cell adhesion, discussing the current knowledge of extracellular and intracellular NCAM ligands and the structural basis of NCAM int- actions with the fibroblast growth factor (FGF) receptor. Section 2, "NCAM and Polysialic Acid," focuses on NCAM polysialylation, discussing the structural and functional aspects of the most important posttranslational modifications of NCAM by the addition of a long linear homopolymer of sialic acid to the fifth Ig-like NCAM module. Section 3, "NCAM-mediated Signal Transduction," is devoted to signal v BookID 187530_ChapID FM1_Proof# 1 - 01/03/2011 BookID 187530_ChapID FM1_Proof# 1 - 01/03/2011 vi Preface transduction mechanisms associated with NCAM-mediated adhesion, with a focus on signaling pathways involved in NCAM-mediated neurite outgrowth, the role of growth-associated proteins, signaling through lipid microdomains, and signaling crosstalk with the epidermal growth factor (EGF) receptor. Section 4, "NCAM Metabolism," focuses on current knowledge about NCAM biosynthesis and the g- eration and role of soluble NCAM.
Over the past decades, the pathogenesis, diagnosis, treatment and prevention of cardiovascular diseases have been benefited significantly from intensive research activities. In order to provide a comprehensive "manual" in a field that has become as broad and deep as cardiovascular medicine, this volume of "Methods in Molecular Medicine" covers a wide spectrum of in vivo and in vitro techniques encompassing biochemical, pharmacological and molecular biology disciplines which are currently used to assess vascular disease progression. Each chapter included in this volume focuses on a specific vascular biology technique and describes various applications as well as caveats of these techniques. The protocols included here are described in detail, allowing beginners with little experience in the field of vascular biology to embark on new research projects.
This volume describes our current understanding of the biological role of the delta-opioid receptor (DOR) system, focusing on its unique mechanisms of receptor trafficking and signaling in disease states. Part 1 covers the endogenous ligands that regulate the DOR system as well as novel compounds and therapies used to modulate the DOR system. Part 2 describes new insights into the localization and trafficking of the DOR and how ligand-directed signaling alters the fate of the receptor. Part 3 concentrates on the potential role of the DOR system in disease states, such as pain, mood, addiction, and Parkinson's disease. Throughout the book, the DOR system as a target for drug development will be discussed.
Membrane permeability is fundamental to all cell biology and
subcellular biology. The cell exists as a closed unit. Import and
export depend upon a number of sophisticated mechanisms, such as
active transport, endocytosis, exocytosis, and passive diffusion.
These systems are critical for the normal housekeeping
physiological functions. However, access to the cell is also taken
advantage of by toxic microbes (such as cholera or ptomaine) and
when designing drugs.
This contributed volume provides a comprehensive assessment of the roles played by 5-HT2B receptors in humans. These receptors have been shown to play an important role is the cardiac, intestinal, and central nervous systems as well as in bone marrow formation and growth. In this book, expert researchers present their findings on molecular and physiological/pathological aspects of 5-HT2B receptors. The molecular section includes a discussion of the genetics of 5-HT2B receptors and impulse control. The physiological section covers their role in many biological systems including the nervous system, the heart, and the lungs.
This book offers an unparalleled source of information on in vivo assessment of nanoparticle toxicity by using Drosophila as a model organism. Nanoparticles have emerged as an useful tool for wide variety of biomedical, cosmetics, and industrial applications. However, our understanding of nanomaterial-mediated toxicity under in vivo condition remains limited. The book begins with a chapter on synthesis and characterization of nanoparticles used for various biological, medical and commercial purposes. The rest of the chapters deal with the impact of nanoparticles on different biological aspects like behavior, physiology and metabolic homoeostasis using Drosophila as a model organism. Lastly, the book summarizes how proper characterization and evaluation of safe dosage of nanoparticles can be a boon if incorporated in consumer goods and for biomedical applications. Overall, the book pursues an interdisciplinary approach by connecting nanotechnology and biology from various angles using Drosophila as a model system, so as to develop more efficient, safe and effective use of nanoparticles for human beings.
For courses in anatomy & physiology for health professions, and comprehensive medical assisting. Where A&P meets pathology: A stimulating exploration Anatomy, Physiology, & Disease: An Interactive Journey for Health Professionals provides an engaging introduction to interrelationships in A&P and pathology, with emphasis on clinical applications. Conversational and humorous, the text uses real-world analogies to enable true understanding - rather than memorization - and to create lasting connections. The 3rd edition presents the latest research and clinical applications in human A&P, plus new visual aids and practice opportunities. A student workbook, available separately, offers interactive exam prep resources, including concept maps and crossword puzzles. New! Also available with MyLab Health Professions By combining trusted author content with digital tools and a flexible platform, MyLab (TM) personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab does not come packaged with this content. Students, if interested in purchasing this title with MyLab, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab, search for: 0135188881 / 9780135188880 Anatomy, Physiology, & Disease: An Interactive Journey for Health Professionals Plus MyLab Health Professions with Pearson eText -- Access Card Package, 3/e Package consists of: 0134876369 / 9780134876368 Anatomy, Physiology, & Disease: An Interactive Journey for Health Professionals, 3/e 0134880196 / 9780134880198 MyLab Health Professions with Pearson eText--Access Card--for Anatomy, Physiology, & Disease, 3/e
This book reports the text of the lectures of the 6th International Conference on Sodium Calcium Exchange held in Lacco Ameno in the Island of Ischia in the Gulf of Naples, Italy, from October 1 to October 5, 2011. The present book uncovers the most striking new findings on NCX that emerged since the previous Conference on Sodium Calcium Exchange, such as the structural dissection of the molecular determinants of Ca2+ sensitivity of the exchanger, the epigenetic regulation of ncx1 gene, the molecular identification of the mitochondrial Sodium Calcium Exchanger, and the discovery of NCX in unexpected anatomical locations such as the female reproductive tract. The book is organized into 11 parts covering NCX structural aspects, genetic and epigenetic regulation, regulatory mechanisms, subcellular localization in mitochondria, involvement in neurodegenerative diseases and in immune regulation, and the role of the cardiovascular and endocrine systems, as well as diabetes in physiology and pathophysiology. Selected chapters of the book are also devoted to the interaction of NCKX and other ion channels and transporters with NCX, like ASICs, TRPM, and NHE.
This book gathers together contributions from internationally renowned authors in the field of cardiovascular systems and provides crucial insight into the importance of sex- and gender-concepts during the analysis of patient data. This innovative title is the first to offer the elements necessary to consider sex-related properties in both clinical and basic studies regarding the heart and circulation on multiscale levels (i.e. molecular, cellular, electrophysiologically, neuroendocrine, immunoregulatory, organ, allometric, and modeling). Observed differences at (ultra)cellular and organ level are quantified, with focus on clinical relevance and implications for diagnosis and patient management. Since the cardiovascular system is of vital importance for all tissues, Sex-Specific Analysis of Cardiovascular Function is an essential source of information for clinicians, biologists, and biomedical investigators. The wide spectrum of differences described in this book will also act as an eye-opener and serve as a handbook for students, teachers, scientists and practitioners.
At the heart of this classic, seminal book is Julian Jaynes's still-controversial thesis that human consciousness did not begin far back in animal evolution but instead is a learned process that came about only three thousand years ago and is still developing. The implications of this revolutionary scientific paradigm extend into virtually every aspect of our psychology, our history and culture, our religion -- and indeed our future.
Regulated turnover of extracellular matrix (ECM) is an important component of tissue homeostasis. In recent years, the enzymes that participate in, and control ECM turnover have been the focus of research that touches on development, tissue remodeling, inflammation and disease. This volume in the Biology of Extracellular Matrix series provides a review of the known classes of proteases that degrade ECM both outside and inside the cell. The specific EMC proteases that are discussed include cathepsins, bacterial collagenases, matrix metalloproteinases, meprins, serine proteases, and elastases. The volume also discusses the domains responsible for specific biochemical characteristics of the proteases and the physical interactions that occur when the protease interacts with substrate. The topics covered in this volume provide an important context for understanding the role that matrix-degrading proteases play in normal tissue remodeling and in diseases such as cancer and lung disease. The series Biology of Extracellular Matrix is published in collaboration with the American Society for Matrix Biology.
Only recently have we begun to appreciate the role of microbiome in health and disease. Environmental factors and change of life style including diet significantly shape human microbiome that in turn appears to modify gut barrier function affecting nutrient & electrolyte absorption and inflammation. Approaches that can reverse the gut dysbiosis represent as reasonable and novel strategies for restoring the balance between host and microbes. In the book, we offer summary and discussion on the advances in understanding of pathophysiological mechanisms of microbial host interactions in human diseases. We will not only discuss intestinal bacterial community, but also viruses, fungi and oral microbiome. Microbiome studies will facilitate diagnosis, functional studies, drug development and personalized medicine. Thus, this book will further highlight the microbiome in the context of health and disease, focusing on mechanistic concepts that underlie the complex relationships between host and microbes.
From humble beginnings over 25 years ago as a lipid kinase activity associated with certain oncoproteins, PI3K (phosphoinositide 3-kinase) has been catapulted to the forefront of drug development in cancer, immunity and thrombosis, with the first clinical trials of PI3K pathway inhibitors now in progress. Here we give a brief overview of some key discoveries in the PI3K area and their impact, and include thoughts on the current state of the field, and where it could go from here
Provide a learner-centred approach to the study of A&P Human Anatomy & Physiology speaks to the way today's diverse students learn and study. In the 2nd Edition, author Erin Amerman strengthens her distinctive learner-centred approach by focusing on three unique pillars. First, Amerman uses art to present one-concept-at-a-time before bringing the distinct parts together in one summarising Big Picture figure. Second, Amerman coaches students right when they need it, beginning on page 51 where the opening module titled How To Succeed in Your Anatomy & Physiology Course appears. And finally, she provides students with ample opportunities to practice and develop critical-thinking skills through questions about case studies and real-world scenarios.
This book introduces the UTCI (Universal Thermal Climate Index) and summarizes progress in this area. The UTCI was developed as part of the European COST Action Program and first announced to the scientific community in 2009. Since then, a decade has followed of applicability tests and research results, as well as knowledge gained from applying the UTCI in human adaptation and thermal perception. These findings are of interest to researchers in the interdisciplinary areas of biometeorology, climatology and urban planning. The book summarizes this progress, discussing the limitations found and provides pointers to future developments. It also discusses UTCI applications in the areas of human biometeorology and urban planning including possibilities of using UTCI and similar indices in climate-responsive urban planning. The book's message is illustrated with many case studies from the real world. Chapter 10 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book puts hydrogen sulfide in context with other gaseous mediators such as nitric oxide and carbon monoxide, reviews the available mechanisms for its biosynthesis and describes its physiological and pathophysiological roles in a wide variety of disease states. Hydrogen sulfide has recently been discovered to be a naturally occurring gaseous mediator in the body. Over a relatively short period of time this evanescent gas has been revealed to play key roles in a range of physiological processes including control of blood vessel caliber and hence blood pressure and in the regulation of nerve function both in the brain and the periphery. Disorders concerning the biosynthesis or activity of hydrogen sulfide may also predispose the body to disease states such as inflammation, cardiovascular and neurological disorders. Interest in this novel gas has been high in recent years and many research groups worldwide have described its individual biological effects. Moreover, medicinal chemists are beginning to synthesize novel organic molecules that release this gas at defined rates with a view to exploiting these new compounds for therapeutic benefit.
Protein conversion from a water-soluble native conformation to the insoluble aggregates and fibrils, which can deposit in amyloid plaques, underlies more than 20 human diseases, representing a major public health problem and a scientific challenge. Such a conversion is called protein misfolding. Protein misfolding can also involve errors in the topology of the folded proteins and their assembly in lipid membranes. Lipids are found in nearly all amyloid deposits in vivo, and can critically influence protein misfolding in vitro and in vivo in many different ways. This book focuses on recent advances in our understanding of the role of lipids in modulating the misfolding of various proteins. The main emphasis is on the basic biophysical studies that address molecular basis of protein misfolding and amyloid formation, and the role of lipids in this complex process. |
You may like...
Eureka: Biochemistry & Metabolism
Andrew Davison, Anna Milan, …
Paperback
Fundamentals of Anatomy and Physiology…
Frederic Martini, Judi Nath, …
Paperback
R2,292
Discovery Miles 22 920
Loose Leaf for Hole's Human Anatomy…
Charles Welsh, Cynthia Prentice-Craver
Loose-leaf
R5,028
Discovery Miles 50 280
Trigger Points - Use the Power of Touch…
Amanda Oswald
Hardcover
(1)
|