Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Classical mechanics > General
Currently, the General Theory of Relativity (GTR) describes the physics of the very large in terms of classical physics, while quantum theory describes the physics of the very small in terms of the Standard Model of particle physics. Unfortunately, the two theories are incompatible and do not describe satisfactorily all the forces between the various particles comprising ordinary matter. At present, one of the deepest problems in theoretical physics is harmonizing the GTR, which describes gravitation, with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. The main aim of the book is to provide an understanding of gravity in terms of a quantum theory given by the Generation Model of particle physics. The book presents a fully quantum theory of gravity, which describes both the large cosmological scale and the small atomic scale interactions between all particles.
This book highlights the challenges faced by renewable energy enterprises (REEs) in emerging markets, by reflecting on the enterprises' own stories and experiences. Research into REEs has focused largely on successful businesses and business models, and developed markets. With significant opportunities for renewable energy enterprise in emerging markets, this book presents a unique business-level perspective. It highlights the key barriers and outlines the strategic and operational solutions for success articulated by the entrepreneurs themselves. The research draws on interviews with entrepreneurs in twenty-eight emerging markets, including Barbados, Cambodia, Chile, Ghana, Indonesia, India, Kenya, South Africa and Uganda. The book concludes by summarising the key solutions for success and illustrating how successful REEs put them into practice. This book will be of great interest to students and scholars of renewable energy, sustainable business and the sustainability agenda in emerging markets.
This textbook provides lecture materials of a comprehensive course in Classical Mechanics developed by the author over many years with input from students and colleagues alike. The richly illustrated book covers all major aspects of mechanics starting from the traditional Newtonian perspective, over Lagrangian mechanics, variational principles and Hamiltonian mechanics, rigid-body, and continuum mechanics, all the way to deterministic chaos and point-particle mechanics in special relativity. Derivation steps are worked out in detail, illustrated by examples, with ample explanations.Developed by a classroom practitioner, the book provides a comprehensive overview of classical mechanics with judicious material selections that can be covered in a one-semester course thus streamlining the instructor's task of choosing materials for their course. The usefulness for instructors notwithstanding, the primary aim of the book is to help students in their understanding, with detailed derivations and explanations, and provide focused guidance for their studies by repeatedly emphasizing how various topics are tied together by common physics principles.
This textbook provides lecture materials of a comprehensive course in Classical Mechanics developed by the author over many years with input from students and colleagues alike. The richly illustrated book covers all major aspects of mechanics starting from the traditional Newtonian perspective, over Lagrangian mechanics, variational principles and Hamiltonian mechanics, rigid-body, and continuum mechanics, all the way to deterministic chaos and point-particle mechanics in special relativity. Derivation steps are worked out in detail, illustrated by examples, with ample explanations.Developed by a classroom practitioner, the book provides a comprehensive overview of classical mechanics with judicious material selections that can be covered in a one-semester course thus streamlining the instructor's task of choosing materials for their course. The usefulness for instructors notwithstanding, the primary aim of the book is to help students in their understanding, with detailed derivations and explanations, and provide focused guidance for their studies by repeatedly emphasizing how various topics are tied together by common physics principles.
The Internet of Energy (IoE), with the integration of advanced information and communication technologies (ICT), has led to a transformation of traditional networks to smart systems. Internet of Energy Handbook provides updated knowledge in the field of energy management with an Internet of Things (IoT) perspective. Features Explains the technological developments for energy management leading to a reduction in energy consumption through topics like smart energy systems, smart sensors, communication, techniques, and utilization Includes dedicated sections covering varied aspects related to renewable sources of energy, power distribution, and generation Incorporates energy efficiency, optimization, and sensor technologies Covers multidisciplinary aspects in computational intelligence and IoT Discusses building energy management aspects including temperature, humidity, the number of persons involved, and light intensity This handbook is aimed at graduate students, researchers, and professionals interested in power systems, IoT, smart grids, electrical engineering, and transmission.
Applied Soft Computing and Embedded System Applications in Solar Energy deals with energy systems and soft computing methods from a wide range of approaches and application perspectives. The authors examine how embedded system applications can deal with the smart monitoring and controlling of stand-alone and grid-connected solar photovoltaic (PV) systems for increased efficiency. Growth in the area of artificial intelligence with embedded system applications has led to a new era in computing, impacting almost all fields of science and engineering. Soft computing methods implemented to energy-related problems regularly face data-driven issues such as problems of optimization, classification, clustering, or prediction. The authors offer real-time implementation of soft computing and embedded system in the area of solar energy to address the issues with microgrid and smart grid projects (both renewable and non-renewable generations), energy management, and power regulation. They also discuss and examine alternative solutions for energy capacity assessment, energy efficiency systems design, as well as other specific smart grid energy system applications. The book is intended for students, professionals, and researchers in electrical and computer engineering fields, working on renewable energy resources, microgrids, and smart grid projects. Examines the integration of hardware with stand-alone PV panels and real-time monitoring of factors affecting the efficiency of the PV panels Offers real-time implementation of soft computing and embedded system in the area of solar energy Discusses how soft computing plays a huge role in the prediction of efficiency of stand-alone and grid-connected solar PV systems Discusses how embedded system applications with smart monitoring can control and enhance the efficiency of stand-alone and grid-connected solar PV systems Explores swarm intelligence techniques for solar PV parameter estimation Dr. Rupendra Kumar Pachauri is Assistant Professor - Selection Grade in the Department of Electrical and Electronics Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India. Dr. Jitendra Kumar Pandey is Professor & Head of R&D in the University of Petroleum and Energy Studies (UPES), Dehradun, India. Mr. Abhishek Sharma is working as a research scientist in the research and development department (UPES, India). Dr. Om Prakash Nautiyal is working as a scientist in Uttarakhand Science Education & Research Centre (USERC), Department of Information and Science Technology, Govt. of Uttarakhand, Dehradun, India. Prof. Mangey Ram is working as a Research Professor at Graphic Era Deemed to be University, Dehradun, India.
Sustainable energy development concept requires and maintains multiple linkages among energy production, energy consumption, human well-being, and environmental quality. Greenhouse Engineering: Integrated Energy Management puts forward the concept of integrated energy management and modeling pertinent to greenhouses that will eventually help reduce the load on power grids, demand for fossil fuels and water, and supply CO2 for the greenhouse production. This book helps enhance the competitive position of the global greenhouse industry by introducing economically, environmentally and socially sustainable technologies and management strategies. Exclusive title on integrated energy management approach for greenhouse designing Addresses energy for heating concept Includes case studies from real work greenhouse systems Incorporates a design/energy management approach Contains updated material on greenhouse heating with examples and case studies Aimed at researchers, professionals, and students in the fields of energy systems, mechanical, agriculture, and biosystems engineering.
Dynamics is what characterizes virtually all phenomenae we face in the real world, and processes that proceed in practically all kinds of inanimate and animate systems, notably social systems. For our purposes dynamics is viewed as time evolution of some characteristic features of the phenomenae or processes under consideration. It is obvious that in virtually all non-trivial problems dynamics can not be neglected, and should be taken into account in the analyses to, first, get insight into the problem consider, and second, to be able to obtain meaningful results. A convenient tool to deal with dynamics and its related evolution over time is to use the concept of a dynamic system which, for the purposes of this volume can be characterized by the input (control), state and output spaces, and a state transition equation. Then, starting from an initial state, we can find a sequence of consecutive states (outputs) under consecutive inputs (controls). That is, we obtain a trajectory. The state transition equation may be given in various forms, exemplified by differential and difference equations, linear or nonlinear, deterministic or stochastic, or even fuzzy (imprecisely specified), fully or partially known, etc. These features can give rise to various problems the analysts may encounter like numerical difficulties, instability, strange forms of behavior (e.g. chaotic), etc. This volume is concerned with some modern tools and techniques which can be useful for the modeling of dynamics. We focus our attention on two important areas which play a key role nowadays, namely automation and robotics, and biological systems. We also add some new applications which can greatly benefit from the availability of effective and efficient tools for modeling dynamics, exemplified by some applications in security systems.
This textbook offers readers an introduction to fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplementary problems featured in the book
Photovoltaic (PV) energy generation is an excellent example of large-scale electric power generation through various parallel arrangements of small voltage-generating solar cells or modules. However, PV generation systems require power electronic converters system to satisfy the need for real-time applications or to balance the demand for power from electric. Therefore, a DC-DC power converter is a vital constituent in the intermediate conversion stage of PV power. This book presents a comprehensive review of various non-isolated DC-DC power converters. Non-isolated DC-DC converters for renewable energy system (RES) application presented in this book 1st edition through a detailed original investigation, obtained numerical/experimental results, and guided the scope to design new families of converters: DC-DC multistage power converter topologies, Multistage "X-Y converter family", Nx IMBC (Nx Interleaved Multilevel Boost Converter), Cockcroft Walton (CW) Voltage Multiplier-Based Multistage/Multilevel Power Converter (CW-VM-MPC) converter topologies, and Z-source and quasi Z-source. Above solutions are discussed to show how they can achieve the maximum voltage conversion gain ratio by adapting the passive/active component within the circuits. For assessment, we have recommended novel power converters through their functionality and designs, tested and verified by numerical software. Further, the hardware prototype implementation is carried out through a flexible digital processor. Both numerical and experimental results always shown as expected close agreement with primary theoretical hypotheses. This book offers guidelines and recommendation for future development with the DC-DC converters for RES applications based on cost-effective, and reliable solutions.
From the international bestselling author of Physics of the Impossible and Physics of the Future. This is the story of a quest: to find a Theory of Everything. Einstein dedicated his life to seeking this elusive Holy Grail, a single, revolutionary 'god equation' which would tie all the forces in the universe together, yet never found it. Some of the greatest minds in physics took up the search, from Stephen Hawking to Brian Greene. None have yet succeeded. In The God Equation, renowned theoretical physicist Michio Kaku takes the reader on a mind-bending ride through the twists and turns of this epic journey: a mystery that has fascinated him for most of his life. He guides us through the key debates in modern physics, from Newton's law of gravity via relativity and quantum mechanics to the latest developments in string theory. It is a tale of dazzling breakthroughs and crushing dead ends, illuminated by Kaku's clarity, storytelling flair and infectious enthusiasm. The object of the quest is now within sight: we are closer than ever to achieving the most ambitious undertaking in the history of science. If successful, the Theory of Everything could simultaneously unlock the deepest mysteries of space and time, and fulfil that most ancient and basic of human desires - to understand the meaning of our lives.
In this book, all physical laws are derived from a small number of invariant integrals which express the conservation of energy, mass, or momentum. This new approach allows us to unify the laws of theoretical physics, to simplify their derivation, and to discover some novel or more universal laws. Newton's Law of gravity is generalized to take into account cosmic forces of repulsion, Archimedes' principle of buoyancy is modified for account of the surface tension, and Coulomb's Laws for rolling friction and for the interaction of electric charges are substantially repaired and generalized. For postgraduate students, lecturers and researchers.
Many dynamical systems are described by differential equations that can be separated into one part, containing linear terms with constant coefficients, and a second part, relatively small compared with the first, containing nonlinear terms. Such a system is said to be weakly nonlinear. The small terms rendering the system nonlinear are referred to as perturbations. A weakly nonlinear system is called quasi-linear and is governed by quasi-linear differential equations. We will be interested in systems that reduce to harmonic oscillators in the absence of perturbations. This book is devoted primarily to applied asymptotic methods in nonlinear oscillations which are associated with the names of N. M. Krylov, N. N. Bogoli ubov and Yu. A. Mitropolskii. The advantages of the present methods are their simplicity, especially for computing higher approximations, and their applicability to a large class of quasi-linear problems. In this book, we confine ourselves basi cally to the scheme proposed by Krylov, Bogoliubov as stated in the monographs 6,211. We use these methods, and also develop and improve them for solving new problems and new classes of nonlinear differential equations. Although these methods have many applications in Mechanics, Physics and Technique, we will illustrate them only with examples which clearly show their strength and which are themselves of great interest. A certain amount of more advanced material has also been included, making the book suitable for a senior elective or a beginning graduate course on nonlinear oscillations."
Rhythms permeate our everyday lives: they animate our bodies, and structure our experience of day and night and the seasons, time patterns of work and leisure, and the temporal organisation of mundane routine activities. Rhythms are also intrinsically about flows of energy - heat, light, motion - that run through the world, from the smallest movements of muscles, to the petrol fuelled patterns of the rush hour, the spinning of wind turbines and shifting cycles of solar radiation. Energy and Rhythm in Society sets out to energise the rhythm in Lefebvre's 'Rhythmanalysis' in order to develop a novel and far reaching polyrhythmic theorisation and exemplification of our collective living with energy in its many natural and technological forms and flows. Through so doing, it also provides a distinctive understanding of the urgent challenges and possibilities of transforming future energy systems and energy uses into more just and lower carbon configurations.
Originally published in 1979, Solar Energy provides a tour of the world of solar energy and asks two key questions: is solar energy the key to the future of our energy needs and what are the facts and potential of this source of renewable power. The book examines solar energy from the past to modern plans for designing domestic solar housing, and looks at the sites and the technology applied to harness the Sun's power, such as the energy potential of windmills and the equatorial oceans. Behrman reports on the progress of scientists and manufacturers in making solar energy a viable competitor in the energy market, and studies the projections of a future energy crop for energy plantations.
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
This book, suitable for interested post-16 school pupils or undergraduates looking for a supplement to their course text, develops our modern view of space-time and its implications in the theories of gravity and cosmology. While aspects of this topic are inevitably abstract, the book seeks to ground thinking in observational and experimental evidence where possible. In addition, some of Einstein's philosophical thoughts are explored and contrasted with our modern views. Written in an accessible yet rigorous style, Jonathan Allday, a highly accomplished writer, brings his trademark clarity and engagement to these fascinating subjects, which underpin so much of modern physics. Features: Restricted use of advanced mathematics, making the book suitable for post-16 students and undergraduates Contains discussions of key modern developments in quantum gravity, and the latest developments in the field, including results from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Accompanied by appendices on the CRC Press website featuring detailed mathematical arguments for key derivations
Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization. This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed. This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Based on the author's decades of years of experience in oil refining, Catalytic Naphtha Reforming Process conveys essential information on key concepts, operations, and practices of catalytic naphtha reforming technologies and associated oil refining processes. The book reviews collective technical and operational advancements with respect to efficient use of catalysts and catalytic reformers in oil refining and incorporates key advancements from recent developments in catalytic reforming technologies and processes. High octane reformate gasoline blendstock production via the use of high performing continuous catalyst regenerative processes is emphasized for regulated, environmentally friendly gasoline. The benefits of timely, effective process unit monitoring are covered in this book. Some of the principal objectives of this book include the need to emphasize more proactive approaches in the planning, operations and maintenance of catalytic reforming units and oil refineries. A number of recommendations are provided for enhancing the operations, reliability, and productivity of catalytic reformers and oil refineries.
Dual-Fuel Diesel Engines offers a detailed discussion of different types of dual-fuel diesel engines, the gaseous fuels they can use, and their operational practices. Reflecting cutting-edge advancements in this rapidly expanding field, this timely book: Explains the benefits and challenges associated with internal combustion, compression ignition, gas-fueled, and premixed dual-fuel engines Explores methane and natural gas as engine fuels, as well as liquefied petroleum gases, hydrogen, and other alternative fuels Examines safety considerations, combustion of fuel gases, and the conversion of diesel engines to dual-fuel operation Addresses dual-fuel engine combustion, performance, knock, exhaust emissions, operational features, and management Describes dual-fuel engine operation on alternative fuels and the predictive modeling of dual-fuel engine performance Dual-Fuel Diesel Engines covers a variety of engine sizes and areas of application, with an emphasis on the transportation sector. The book provides a state-of-the-art reference for engineering students, practicing engineers, and scientists alike.
In the face of growing environmental challenges, including climate change and energy security, countries across the globe are developing new policies and programs to address these challenges, and China is no exception. This book analyses China's two most significant climate-related energy policies, the Clean Development Mechanism (CDM; including the later Chinese Certified Emission Reduciton - CCER) and the Energy Conservation and Emission Reduction Scheme (ECERS). This work specifically examines the strengths and weaknesses of these policies to highlight the deficiencies and advise how they can be optimised, so China can better achieve its emission reduction goals. It analyses the roles and relationships between relevant actors and identifies how successful their cooperation has been, and what factors have affected it. Importantly, the work draws on a wide range of sources from central ministries to civil society, including interviews with Chinese officials, scholars, energy company managers, environment non-govermental organisation (ENGO) personnel, media reports, and online forum discussions. In doing so, the book not only analyses the thoughts of policymakers, as many works do, but also those implementing the policies and those impacted by the policies. The book concludes by offering detailed and practical solutions to address each specific deficiency in the CDM and ECERS policies, with the aim of providing innovations and alternative approaches to improve current and future policies in China. This book will be of great interest to students, scholars, and policymakers interested in climate change, energy, and Chinese environmental policy and politics.
Energy demand reduction is fast becoming a business activity for all companies and organisations because it can increase profits regardless of the nature of their core activity. The International Energy Agency believes that industry could improve its energy efficiency and reduce carbon dioxide emissions by almost a third using the best available practices and technologies. This guide looks at the many ways available to energy managers to achieve or even exceed this level of performance, including: base-lining consumption planning a monitoring and verification strategy metering (including smart, wireless metering) energy supply management motors and drives compressed air and process controls. Uniquely, it includes a whole chapter on greening data centres. It also looks at topics covered in greater detail in its companion volume, Energy Management in Buildings: insulation, lighting, renewable heating, cooling and HVAC systems. Further chapters examine minimising water use and how to make the financial case, both to prioritise measures for cost effectiveness, and to get management on board. This title is aimed at all professional energy, industry and facilities managers, energy consultants, students, trainees and academics and can be read alongside training for ISO 50001 - Energy Management Systems. It takes the reader from basic concepts to the latest advanced thinking, with principles applicable anywhere in the world and in any climate. |
You may like...
Pearson Edexcel International A Level…
Joe Skrakowski, Harry Smith
Digital product license key
R869
Discovery Miles 8 690
|