![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Classical mechanics > General
In this book the modern theory of both regular and chaotic nonlinear oscillations is set out, primarily, as applied to mechanical problems. The material is presented in a nontraditional manner with emphasis on the new results of the theory obtained partially by the author, who is one of the leading experts in the area. Among the up-to-date topics are synchronization and chaotization of self-oscillatory systems and the influence of weak random vibrations on the modification of characteristics and behavior of nonlinear systems. One of the purposes of the book is to enable readers to gain a thorough understanding of this theory and to show that it can be very useful in engineering investigations. The primary audience for this book is researchers working with different oscillatory processes and students interested in a thorough study of the general laws and applications of the theory of nonlinear oscillations.
This book covers main properties of the excitation spectrum in superfluid 4He and the thermodynamics determined by the spectrum. It deals with hydrodynamics and describes that quantitative results should be insignificantly modified with processes of phonon decay taken into account.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
The climate is changing as an unintended consequence of human industrialization and consumerism. Recently some scientists and engineers have suggested climate engineering-technological solutions that would intentionally change the climate to make it more hospitable. This approach focuses on large-scale technologies to alleviate the worst effects of anthropogenic climate change. This book considers the moral, philosophical, and religious questions raised by such proposals, bringing Christian theology and ethics into the conversation about climate engineering for the first time. The contributors have different views on whether climate engineering is morally acceptable and on what kinds of climate engineering are most promising and most dangerous, but all agree that religion has a vital role to play in the analysis and decisions called for on this vital issue. Calming the Storm presents diverse perspectives on some of the most vital questions raised by climate engineering: Who has the right to make decisions about such global technological efforts? What have we learned from the decisions that caused the climate to change that might shed light on efforts to reverse that change? What frameworks and metaphors are helpful in thinking about climate engineering, and which are counterproductive? What religious beliefs, practices, and rituals can help people to imagine and evaluate the prospect of engineering the climate?
This textbook summarizes the course of engineering mechanics, designed for one or two semesters, at the undergraduate or graduate level for a range of academic majors. The book covers all the main components of the discipline including: Theoretical Mechanics, Theory of Mechanisms and Machines, Resistance of Materials, Machine Parts and Design Basic; and Interchangeability, Standardization, and Technical Measurements. It can also be used by students of other technical areas in to achieve competence in each of the listed disciplines. The concise presentation facilitates concentration on the most important elements of the concepts presented while also outlining the current state of mechanics, demonstrating engineering applications using various computer packages (MathCad, CosmosWorks, Inkscape, AutoCad), and updating data on engineering materials. Examples of both simple and complex engineering calculations are given at the end of each chapter along with self-assessment questions.
Originally published in 1988. This book considers why some public policies succeed and others do not. It looks at the entrepreneurial process that creates public policies and examines whether they prosper or falter because of their political consequences. The programs and personnel of the Atomic Energy Commission are the empirical foundation for these arguments. The data generated by that agency's annual budget-making cycles, collected over time and organised by program, are used as evidence to test some propositions about policy formation within the executive branch of government. The author's concern is with questions of where and how priorities are established in a complex institutional environment. To answer the more fundamental causal question of why some programs prosper while others wither or die, use is made of more historical analysis and comparison of the fortunes of several of AEC's efforts to develop applied nuclear technology.
Originally published in 1980. More so than any other energy resource, nuclear power has the capacity to provide much of our energy needs but is highly controversial. This book discusses the major British decisions in the civil nuclear field, and the way they were made, between 1953 and 1978. It spans the period between the decision to construct Calder Hall - claimed as the world's first nuclear power station - and the Windscale Inquiry - claimed as the world's most thorough study of a nuclear project. For the period up to 1974 this involves a study of the internal processes of British central government. The private issues include the technical selection of nuclear reactors, the economic arguments about nuclear power and the political clashes between institutions and individuals. The public issues concern nuclear safety and the environment and the rights and opportunities for individuals and groups to protest about nuclear development. The book demonstrates that British civil nuclear power decision making had many shortcomings and concludes that it was hampered by outdated political and administrative attitudes and machinery and that some of the central issues in the nuclear power debate were misunderstood by the decision makers themselves.
In Materials Modelling: From Theory to Technology, a distinguished collection of authors has been assembled to celebrate the 60th birthday of Dr. R. Bullough, FRS and honor his contribution to the subject over the past 40 years. The volume explores subjects that have implications in a wide range of technologies, focusing on how basic research can be applied to real problems in science and engineering. Linking theory and technology, the book progresses from the theoretical background to current and future practical applications of modeling. Accessible to a diverse audience, it requires little specialist knowledge beyond a physics degree. The book is useful reading for postgraduates and researchers in condensed matter, nuclear engineering, and physical metallurgy, in addition to workers in R&D laboratories and the high technology industry.
The aim of this book is to make the subject easier to understand. This book provides clear concepts, tools, and techniques to master the subject -tensor, and can be used in many fields of research. Special applications are discussed in the book, to remove any confusion, and for absolute understanding of the subject. In most books, they emphasize only the theoretical development, but not the methods of presentation, to develop concepts. Without knowing how to change the dummy indices, or the real indices, the concept cannot be understood. This book takes it down a notch and simplifies the topic for easy comprehension. Features Provides a clear indication and understanding of the subject on how to change indices Describes the original evolution of symbols necessary for tensors Offers a pictorial representation of referential systems required for different kinds of tensors for physical problems Presents the correlation between critical concepts Covers general operations and concepts
Because classical thermodynamics evolved into many branches of science and engineering, most undergraduate courses on the subject are taught from the perspective of each area of specialization. General Thermodynamics combines elements from mechanical and chemical engineering, chemistry (including electrochemistry), materials science, and biology to present a unique and thorough treatment of thermodynamics that is broader in scope than other fundamental texts. This book contains classroom-tested materials designed to meet the academic requirements for students from a variety of scientific and engineering backgrounds in a single course. The first half focuses on classical concepts of thermodynamics, whereas the latter half explores field-specific applications, including a unique chapter on biothermodynamics. The book's methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations. Each chapter contains numerous worked examples taken from different engineering applications, illustrations, and an extensive set of exercises to support the material. A complete solutions manual is available to professors with qualifying course adoptions.
While there are many historical examples of successful naturally ventilated buildings, standards for indoor climate have tended to emphasise active, mechanical airflow systems rather than passive natural systems. Despite its importance, knowledge about the performance of naturally ventilated buildings has remained comparatively sparse. With ten key research papers this book seeks to address this lack of information.
Discusses all the major aspects of automotive and engine lubrication - presenting state-of-the-art advances in the field from both research and industrial perspectives. This book should be of interest to mechanical, lubrication and automotive engineers, automotive and machinery designers as well as undergraduate and graduate students in these fields.
This volume explores the complex problems that arise in the modeling and simulation of crowd dynamics in order to present the state-of-the-art of this emerging field and contribute to future research activities. Experts in various areas apply their unique perspectives to specific aspects of crowd dynamics, covering the topic from multiple angles. These include a demonstration of how virtual reality may solve dilemmas in collecting empirical data; a detailed study on pedestrian movement in smoke-filled environments; a presentation of one-dimensional conservation laws with point constraints on the flux; a collection of new ideas on the modeling of crowd dynamics at the microscopic scale; and others. Applied mathematicians interested in crowd dynamics, pedestrian movement, traffic flow modeling, urban planning, and other topics will find this volume a valuable resource. Additionally, researchers in social psychology, architecture, and engineering may find this information relevant to their work.
This book deals with blow-up of a solution to a system of PDEs that arise in practical situations. It begins with a relatively simple account of blow-up in systems of interaction-diffusion equations, then concentrates on mechanics. In particular it deals with the Euler equations, Navier--Stokes equations, models for glacier physics, Korteweg--de-Vries equations, and ferro-hydrodynamics. Blow-up is treated in Volterra equations, stressing how these equations arise in mechanics, e.g. in combustion theory. Further topics are chemotaxis in mathematical biology, change of type, from hyperbolic to elliptic, instability in soils, instability in sea ice dynamics, instability in pressure-dependent viscosity flow, and energy growth in parallel shear flows. It addresses graduate students and researchers in mechanics.
The volume that you have before you is the result of a growing realization that fluctuations in nonequilibrium systems playa much more important role than was 1 first believed. It has become clear that in nonequilibrium systems noise plays an active, one might even say a creative, role in processes involving self-organization, pattern formation, and coherence, as well as in biological information processing, energy transduction, and functionality. Now is not the time for a comprehensive summary of these new ideas, and I am certainly not the person to attempt such a thing. Rather, this short introductory essay (and the book as a whole) is an attempt to describe where we are at present and how the viewpoint that has evolved in the last decade or so differs from those of past decades. Fluctuations arise either because of the coupling of a particular system to an ex ternal unknown or "unknowable" system or because the particular description we are using is only a coarse-grained description which on some level is an approxima tion. We describe the unpredictable and random deviations from our deterministic equations of motion as noise or fluctuations. A nonequilibrium system is one in which there is a net flow of energy. There are, as I see it, four basic levels of sophistication, or paradigms, con cerning fluctuations in nature. At the lowest level of sophistication, there is an implicit assumption that noise is negligible: the deterministic paradigm."
Originally published in 1981. Every aspect of Energy - production, conversion and use - is discussed and explained in this unique dictionary. Comprehensive and well-illustrated entries cover fossil and other types of chemical fuel; hydro-electric and nuclear power; energy conservation; solar energy of every kind; wind, wave and tidal power. Every type of nuclear reactor is described, with emphasis on the energy technologies that have the greatest relevance and future promise. The first section is devoted to a careful explanation of the units used, with conversion tables; key concepts are precisely defined. The closing sections comprise tables of international energy statistics and a short bibliography. This is an excellent introduction and invaluable reference work for general readers, students and all workers in energy and energy-related fields.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book is a superb tool in virtually all application areas involving the Kinetic Theory of Gases, Rarefied Gas Dynamics, Transport Theory, and Aerosol Mechanics.It has been especially designed to serve a dual function, both as a teaching instrument either in a classroom environment or at home, and as a reference for scientists and engineers working in relevant fields.The Kinetic Theory of Gases has applications in many areas of science and technology as well as in our understanding of phenomena from the nano- to the cosmic scale.Some of the fields and topics affected include manufacturing, health care, defence, and aerospace science and engineering.
This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in -Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide zinc oxide interaction
Foundations of Mechanics is a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the two-body problem and three-body problem.
Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a complex process involving the calculus of variations, the authors carefully lay out step-by-step the most important theorems and concepts. Numerous examples are worked to demonstrate how to apply the theories to everything from classical problems (e.g., crossing a river in minimum time) to engineering problems (e.g., minimum-fuel launch of a satellite). Throughout the book use is made of the time-optimal launch of a satellite into orbit as an important case study with detailed analysis of two examples: launch from the Moon and launch from Earth. For launching into the field of optimal solutions, look no further!
The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field. |
You may like...
Electrodynamics - Problems and Solutions
Carolina C Ilie, Zachariah S. Schrecengost
Paperback
R754
Discovery Miles 7 540
Polymers for Energy Storage and Delivery…
Kirt A. Page, Christopher L. Soles, …
Hardcover
R5,481
Discovery Miles 54 810
|