Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
AI Metaheuristics for Information Security in Digital Media examines the latest developments in AI-based metaheuristics algorithms with applications in information security for digital media. It highlights the importance of several security parameters, their analysis, and validations for different practical applications. Drawing on multidisciplinary research including computer vision, machine learning, artificial intelligence, modified/newly developed metaheuristics algorithms, it will enhance information security for society. It includes state-of-the-art research with illustrations and exercises throughout.
The book "Analysis and Design of Control Systems using MATLAB", is designed as a supplement to an introductory course in feedback control systems for undergraduate or graduate engineering students of all disciplines. Feedback control systems engineering is a multidisciplinary subject and presents a control engineering methodology based on mathematical fundamentals and stresses physical system modeling.This book includes the coverage of classical methods of control systems engineering: introduction to control systems, matrix analysis, Laplace transforms, mathematical modeling of dynamic systems, control system representation, performance and stability of feedback systems, analysis and design of feedback control systems, state space analysis and design, and MATLAB basics and MATLAB tutorial. The numerous worked examples offer detailed explanations, and guide the students through each set of problems to enable them to save a great deal of time and effort in arriving at an understanding of problems in this subject. Extensive references to guide the students to further sources of information on control systems and MATLAB is provided. In addition to students, practising engineers will also find this book immensely useful.
This book discusses the supervision of hybrid systems and presents models for control, optimization and storage. It provides a guide for practitioners as well as graduate and postgraduate students and researchers in both renewable energy and modern power systems, enabling them to quickly gain an understanding of stand-alone and grid-connected hybrid renewable systems. The book is accompanied by an online MATLAB package, which offers examples of each application to help readers understand and evaluate the performance of the various hybrid renewable systems cited. With a focus on the different configurations of hybrid renewable energy systems, it offers those involved in the field of renewable energy solutions vital insights into the control, optimization and supervision strategies for the different renewable energy systems.
The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation. Keywords: Asteroids, Asteroid exploration, Asteroid exploitation, Energy sources, Space Resources, Material Resources, In-Situ Resource Utilization, Mining
This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work. A common feature of all contribution is the extensive discussion of bound states," i.e. their formation and dissolution due to medium effects. This applies to atoms and molecules in plasmas, fluids, and small clusters, excitons in semiconductors, or nucleons, deuterons, and alpha-particles in nuclear matter. In this way, the transition from delocalized to localized states and vice versa can be described on a common level."
Learning and Generalization provides a formal mathematical theory for addressing intuitive questions of the type: * How does a machine learn a new concept on the basis of examples? * How can a neural network, after sufficient training, correctly predict the outcome of a previously unseen input? * How much training is required to achieve a specified level of accuracy in the prediction? * How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite interval of time? The first edition, A Theory of Learning and Generalization, was the first book to treat the problem of machine learning in conjunction with the theory of empirical process, the latter being a well-established branch of probability theory. The treatment of both topics side-by-side leads to new insights, as well as new results in both topics. The second edition extends and improves upon this material, covering new areas including: * Support vector machines (SVM's) * Fat-shattering dimensions and applications to neural network learning * Learning with dependent samples generated by a beta-mixing process * Connections between system identification and learning theory * Probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms It also contains solutions to some of the open problems posed in the first edition, while adding new open problems. This book is essential reading for control and system theorists, neural network researchers, theoretical computer scientists and probabilists The Communications and Control Engineering series reflects the major technological advances which have a great impact in the fields of communication and control. It reports on the research in industrial and academic institutions around the world to exploit the new possibilities which are becoming available
This contributed volume provides the state-of-the-art development on security and privacy for cyber-physical systems (CPS) and industrial Internet of Things (IIoT). More specifically, this book discusses the security challenges in CPS and IIoT systems as well as how Artificial Intelligence (AI) and Machine Learning (ML) can be used to address these challenges. Furthermore, this book proposes various defence strategies, including intelligent cyber-attack and anomaly detection algorithms for different IIoT applications. Each chapter corresponds to an important snapshot including an overview of the opportunities and challenges of realizing the AI in IIoT environments, issues related to data security, privacy and application of blockchain technology in the IIoT environment. This book also examines more advanced and specific topics in AI-based solutions developed for efficient anomaly detection in IIoT environments. Different AI/ML techniques including deep representation learning, Snapshot Ensemble Deep Neural Network (SEDNN), federated learning and multi-stage learning are discussed and analysed as well. Researchers and professionals working in computer security with an emphasis on the scientific foundations and engineering techniques for securing IIoT systems and their underlying computing and communicating systems will find this book useful as a reference. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, cyber security, and information systems. It also applies to advanced-level students studying electrical engineering and system engineering, who would benefit from the case studies.
A discussion of recently developed experimental methods for noise research in nanoscale electronic devices, conducted by specialists in transport and stochastic phenomena in nanoscale physics. The approach described is to create methods for experimental observations of noise sources, their localization and their frequency spectrum, voltage-current and thermal dependences. Our current knowledge of measurement methods for mesoscopic devices is summarized to identify directions for future research, related to downscaling effects. The directions for future research into fluctuation phenomena in quantum dot and quantum wire devices are specified. Nanoscale electronic devices will be the basic components for electronics of the 21st century. From this point of view the signal-to-noise ratio is a very important parameter for the device application. Since the noise is also a quality and reliability indicator, experimental methods will have a wide application in the future.
This book provides readers with a valuable reference on cyber weapons and, in particular, viruses, software and hardware Trojans. The authors discuss in detail the most dangerous computer viruses, software Trojans and spyware, models of computer Trojans affecting computers, methods of implementation and mechanisms of their interaction with an attacker - a hacker, an intruder or an intelligence agent. Coverage includes Trojans in electronic equipment such as telecommunication systems, computers, mobile communication systems, cars and even consumer electronics. The evolutionary path of development of hardware Trojans from "cabinets", "crates" and "boxes" to the microcircuits (IC) is also discussed. Readers will benefit from the detailed review of the major known types of hardware Trojans in chips, principles of their design, mechanisms of their functioning, methods of their introduction, means of camouflaging and detecting, as well as methods of protection and counteraction.
This book offers an overview of some recent advances in the Computational Bioacoustics methods and technology. In the focus of discussion is the pursuit of scalability, which would facilitate real-world applications of different scope and purpose, such as wildlife monitoring, biodiversity assessment, pest population control, and monitoring the spread of disease transmitting mosquitoes. The various tasks of Computational Bioacoustics are described and a wide range of audio parameterization and recognition tasks related to the automated recognition of species and sound events is discussed. Many of the Computational Bioacoustics methods were originally developed for the needs of speech, audio, or image processing, and afterwards were adapted to the requirements of automated acoustic recognition of species, or were elaborated further to address the challenges of real-world operation in 24/7 mode. The interested reader is encouraged to follow the numerous references and links to web resources for further information and insights. This book is addressed to Software Engineers, IT experts, Computer Science researchers, Bioacousticians, and other practitioners concerned with the creation of new tools and services, aimed at enhancing the technological support to Computational Bioacoustics applications. STTM, Speech Technology and Text Mining in Medicine and Health Care This series demonstrates how the latest advances in speech technology and text mining positively affect patient healthcare and, in a much broader sense, public health at large. New developments in text mining methods have allowed health care providers to monitor a large population of patients at any time and from any location. Employing advanced summarization techniques, patient data can be readily extracted from extensive clinical documents in electronic health records and immediately made available to the physician. These same summarization techniques can also aid the healthcare provider in extracting from the large corpora of medical literature the relevant information for treating the patient. The series topics include the design and acceptance of speech-enabled robots that assist in the operating room, studies of signal processing and acoustic modeling for speech and communication disorders, advanced statistical speech enhancement methods for creating synthetic voice, and technologies for addressing speech and language impairments. Titles in the Series consist of both authored books and edited contributions. All authored books and contributed works are peer-reviewed. The Series is for speech scientists and speech engineers, machine learning experts, biomedical engineers, medical speech pathologists, linguists, and healthcare professionals
try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.
This book details timing analysis and optimization techniques for circuits with level-sensitive memory elements. It contains a linear programming formulation applicable to the timing analysis of large scale circuits and includes a delay insertion methodology that improves the efficiency of clock skew scheduling. Coverage also provides a framework for and results from implementing timing optimization algorithms in a parallel computing environment.
- the book provides a short and accessible introduction to AI for learners - it examines seven different educational roles and settings, from AI as a peer to AI as a tutor and AI as textbook, among others - it considers both opportunities and risks: technological developments as well as ethical considerations
It explores a variety of modern applications in soft computing, including bioinspired computing, reconfigurable computing, fuzzy logic, fusion-based learning, intelligent healthcare systems, bioinformatics, data mining, functional approximation, genetic and evolutionary algorithms, hybrid models, machine learning, meta heuristics, neuro fuzzy system, and optimization principles. The book acts as a reference book for AI developers, researchers, and academicians as it addresses the recent technological developments in the field of soft computing.
Electrical drives lie at the heart of most industrial processes and make a major contribution to the comfort and high quality products we all take for granted. They provide the controller power needed at all levels, from megawatts in cement production to milliwatts in wrist watches. Other examples are legion, from the domestic kitchen to public utilities. The modern electrical drive is a complex item, comprising a controller, a static converter and an electrical motor. Some can be programmed by the user. Some can communicate with other drives. Semiconductor switches have improved, intelligent power modules have been introduced, all of which means that control techniques can be used now that were unimaginable a decade ago. Nor has the motor side stood still: high-energy permanent magnets, semiconductor switched reluctance motors, silicon micromotor technology, and soft magnetic materials produced by powder technology are all revolutionising the industry. But the electric drive is an enabling technology, so the revolution is rippling throughout the whole of industry.
This book is a collection of papers presented at the last Scientific Computing in Electrical Engineering (SCEE) Conference, held in Sicily, in 2004. The series of SCEE conferences aims at addressing mathematical problems which have a relevancy to industry. The areas covered at SCEE-2004 were: Electromagnetism, Circuit Simulation, Coupled Problems and General mathematical and computational methods.
The concept to utilize an ion-conducting polymer membrane as a solid po- mer electrolyte offers several advantages regarding the design and operation of an electrochemical cell, as outlined in Volume 215, Chapter 1 (L. Gubler, G.G. Scherer). Essentially, the solvent and/or transport medium, e.g., H O, 2 + for the mobile ionic species, e.g., H for a cation exchange membrane, is taken up by and con?ned into the nano-dimensional morphology of the i- containingdomainsofthepolymer.Asaconsequence, aphaseseparationinto a hydrophilic ion-containing solvent phase and a hydrophobic polymer ba- bone phase establishes. Because of the narrow solid electrolyte gap in these cells, low ohmic losses reducing the overall cell voltage can be achieved, even at highcurrent densities. This concept was applied to fuel cell technology at a very early stage; h- ever, performance and reliability of the cells were low due to the dissatisfying membrane properties at that time. The development of per?uoro sulfonate and carboxylate-type membranes, in particular for the chlor-alkali process, directly fostered the further development of proton-conducting membranes and, as a consequence, also the progress in this type of fuel cell technology (polymer electrolyte fuel cell, PEFC)
This book provides essential future directions for IoT and Big Data research. Thanks to rapid advances in sensors and wireless technology, Internet of Things (IoT)-related applications are attracting more and more attention. As more devices are connected, they become potential components for smart applications. Thus, there is a new global interest in these applications in various domains such as health, agriculture, energy, security and retail. The main objective of this book is to reflect the multifaceted nature of IoT and Big Data in a single source. Accordingly, each chapter addresses a specific domain that is now being significantly impacted by the spread of soft computing
This book analyzes the thermal characteristics of power electronic devices (PEDs) with a focus on those used in wind and solar energy systems. The authors focus on the devices used in such applications, for example boost converters and inverters under different operating conditions. The book explains in detail finite element modeling techniques, setting up measuring systems, data analysis, and PEDs' lifetime calculations. It is appropriate reading for graduate students and researchers who focus on the design and reliability of power electronic devices.
Features Introduces the physics of accelerators, lasers, and plasma in tandem with the industrial methodology of inventiveness. Outlines a path from idea to practical implementation of scientific and technological innovation. Contains more than 380 illustrations and numerous end-of-chapter exercises.
Hybrid Computational Intelligent Systems – Modeling, Simulation and Optimization unearths the latest advances in evolving hybrid intelligent modeling and simulation of human-centric data-intensive applications optimized for real-time use, thereby enabling researchers to come up with novel breakthroughs in this ever-growing field. Salient features include the fundamentals of modeling and simulation with recourse to knowledge-based simulation, interaction paradigms, and human factors, along with the enhancement of the existing state of art in a high-performance computing setup. In addition, this book presents optimization strategies to evolve robust and failsafe intelligent system modeling and simulation. The volume also highlights novel applications for different engineering problems including signal and data processing, speech, image, sensor data processing, innovative intelligent systems, and swarm intelligent manufacturing systems. Features: A self-contained approach to integrating the principles of hybrid computational ntelligence with system modeling and simulation Well-versed foundation of computational intelligence and its application to real life engineering problems Elucidates essential background, concepts, definitions, and theories thereby putting forward a complete treatment on the subject Effective modeling of hybrid intelligent systems forms the backbone of almost every operative system in real-life Proper simulation of real-time hybrid intelligent systems is a prerequisite for deriving any real-life system solution Optimized system modeling and simulation enable real-time and failsafe operations of the existing hybrid intelligent system solutions Information presented in an accessible way for researchers, engineers, developers, and practitioners from academia and industry working in all major areas and interdisciplinary areas of hybrid computational intelligence and communication systems to evolve human-centered modeling and simulations of real-time data-intensive intelligent systems.
1. Propose the latest discoveries in terms of machine intelligence techniques and methods for cybersecurity and privacy; 2. Propose many case studies and applications of machine intelligence in various cybersecurity fields (Smart City, IoT, Cyber Physical System, etc) 3. Combine theory and practice so that readers of the few books (beginners or experts) can find both a description of the concepts and context related to machine intelligence for cybersecurity.
Renewable energy sources such as wind power have attracted much attention because they are environmentally friendly, do not produce carbon dioxide and other emitants, and can enhance a nation's energy security. For example, recently more significant amounts of wind power are being integrated into conventional power grids. Therefore, it is necessary to address various important and challenging issues related to wind power systems, which are significantly different from the traditional generation systems. This book is a resource for engineers, practitioners, and decision-makers interested in studying or using the power of computational intelligence based algorithms in handling various important problems in wind power systems at the levels of power generation, transmission, and distribution. Researchers have been developing biologically-inspired algorithms in a wide variety of complex large-scale engineering domains. Distinguished from the traditional analytical methods, the new methods usually accomplish the task through their computationally efficient mechanisms. Computational intelligence methods such as evolutionary computation, neural networks, and fuzzy systems have attracted much attention in electric power systems. Meanwhile, modern electric power systems are becoming more and more complex in order to meet the growing electricity market. In particular, the grid complexity is continuously enhanced by the integration of intermittent wind power as well as the current restructuring efforts in electricity industry. Quite often, the traditional analytical methods become less efficient or even unable to handle this increased complexity. As a result, it is natural to apply computational intelligence as a powerful tool to deal with various important and pressing problems in the current wind power systems. This book presents the state-of-the-art development in the field of computational intelligence applied to wind power systems by reviewing the most up-to-date work and representative practical problems collecting contributions from leading experts in electrical engineering, system engineering, and other disciplines.
When the 50th anniversary of the birth of Information Theory was celebrated at the 1998 IEEE International Symposium on Informa tion Theory in Boston, there was a great deal of reflection on the the year 1993 as a critical year. As the years pass and more perspec tive is gained, it is a fairly safe bet that we will view 1993 as the year when the "early years" of error control coding came to an end. This was the year in which Berrou, Glavieux and Thitimajshima pre sented "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes" at the International Conference on Communications in Geneva. In their presentation, Berrou et al. claimed that a combi nation of parallel concatenation and iterative decoding can provide reliable communications at a signal to noise ratio that is within a few tenths of a dB of the Shannon limit. Nearly fifty years of striving to achieve the promise of Shannon's noisy channel coding theorem had come to an end. The implications of this result were immediately apparent to all -coding gains on the order of 10 dB could be used to dramatically extend the range of communication receivers, increase data rates and services, or substantially reduce transmitter power levels. The 1993 ICC paper set in motion several research efforts that have permanently changed the way we look at error control coding." |
You may like...
Power System Analysis and Design, SI…
J. Duncan Glover, Mulukutla Sarma, …
Paperback
Modern Control Systems, Global Edition
Richard Dorf, Robert Bishop
Paperback
R2,514
Discovery Miles 25 140
Data Reimagined - Building Trust One…
Jodi Daniels, Justin Daniels
Hardcover
|