![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
This book reports on advanced theories and methods in three related fields of research: applied physics, system science and computers. It is organized in three parts, the first of which covers applied physics topics, including lasers and accelerators; condensed matter, soft matter and materials science; nanoscience and quantum engineering; atomic, molecular, optical and plasma physics; as well as nuclear and high-energy particle physics. It also addresses astrophysics, gravitation, earth and environmental science, as well as medical and biological physics. The second and third parts focus on advances in computers and system science, respectively, and report on automatic circuit control, power systems, computer communication, fluid mechanics, simulation and modeling, software engineering, data structures and applications of artificial intelligence among other areas. Offering a collection of contributions presented at the 2nd International Conference on Applied Physics, System Science and Computers (APSAC), held in Dubrovnik, Croatia on September 27-29, 2017, the book bridges the gap between applied physics and electrical engineering. It not only to presents new methods, but also promotes collaborations between different communities working on related topics at the interface between physics and engineering, with a special focus on communication, data modeling and visualization, quantum information, applied mechanics as well as bio and geophysics.
Discusses steady state (i.e. power flow) solution of integrated AC/DC system for operating any multi-terminal HVDC grid within an existing AC grid Presents a detailed theoretical analysis of the system equilibrium under the different types of converter control HVDC power-flow models developed have been validated by implementation in IEEE 300-bus test network integrated with different HVDC grids DC grid power-flow controllers like the IDCPFC has been introduced and subsequently modeled into the powerflow algorithm Both unified and sequential powerflow models are covered
This book discusses the latest advances in cyber-physical security and resilience of cyber-physical systems, including cyber-attack detection, isolation, situation awareness, resilient estimation and resilient control under attack. It presents both theoretical results and important applications of the methods. Security and Resilience in Cyber-Physical Systems begins by introducing the topic of cyber-physical security, covering state-of-the-art trends in both theory and applications, as well as some of the emerging methodologies and future directions for research. It then moves on to detail theoretical methods of attack detection, resilient estimation and control within cyber-physical systems, before discussing their various applications, such as power generation and distribution, autonomous systems, wireless communication networks and chemical plants. Focusing on the detection of and accommodation to cyber-attacks on cyber-physical systems, and including both estimation and artificial-intelligence-based methods, this book will be of interest to researchers, engineers and graduate students within the fields of cyber-physical security and resilient control.
This book focuses on the combination of IoT and data science, in particular how methods, algorithms, and tools from data science can effectively support IoT. The authors show how data science methodologies, techniques and tools, can translate data into information, enabling the effectiveness and usefulness of new services offered by IoT stakeholders. The authors posit that if IoT is indeed the infrastructure of the future, data structure is the key that can lead to a significant improvement of human life. The book aims to present innovative IoT applications as well as ongoing research that exploit modern data science approaches. Readers are offered issues and challenges in a cross-disciplinary scenario that involves both IoT and data science fields. The book features contributions from academics, researchers, and professionals from both fields.
The proposed title intends to provide a comprehensive view of emerging paradigms of computer science. The initial chapters will introduce various emerging paradigms and discuss research challenges related to them. Then some of the chapters will focus on the research solutions to address the identified challenges. The last few chapters will provide a discussion on future research directions.
This book features selected papers presented at Third International Conference on International Conference on Information Management and Machine Intelligence (ICIMMI 2021) held at Poornima Institute of Engineering & Technology, Jaipur, Rajasthan, India during 23 - 24 December 2021. It covers a range of topics, including data analytics; AI; machine and deep learning; information management, security, processing techniques and interpretation; applications of artificial intelligence in soft computing and pattern recognition; cloud-based applications for machine learning; application of IoT in power distribution systems; as well as wireless sensor networks and adaptive wireless communication.
This book presents the state of the art of Internet of Things (IoT) from the perspective of healthcare and Ambient Assisted Living (AAL). It discusses the emerging technologies in healthcare services used for healthcare professionals and patients for enhanced living environments and public health. The topics covered in this book include emerging eHealth IoT applications, Internet of Medical Things, health sensors, and wearable sensors for pervasive and personalized healthcare, and smart homes applications for enhanced health and well-being. The book also presents various ideas for the design and development of IoT solutions for healthcare and AAL. It will be useful for bioengineers and professionals working in the areas of healthcare as well as health informatics.
This textbook provides students with an introduction to the fundamentals and applications of solar photovoltaic systems, connecting the theory of solar photovoltaics and the practical applications of this very important source of energy. Chapters are written concisely in straightforward language that provides clear explanations of the concepts and principles, with an emphasis on humanitarian applications of photovoltaic systems and a focus on relatively small size systems that will make the book relatable to readers. It begins with an introduction and overview of the fundamentals of solar cell fabrication, module design, and performance along with an evaluation of solar resources. The book then moves on to address the details of individual components of photovoltaic systems, design of off-grid, hybrid, and distributed photovoltaic systems, and grid-tied photovoltaic systems based on the National Electrical Code (NEC). Coverage also includes a techno-economic analysis of solar photovoltaics, a discussion of the challenges and probable solutions of photovoltaic penetration into the utility grid, and an exploration of the potential of photovoltaic systems. Photovoltaic Systems: Fundamentals and Applications is designed to be used as an introductory textbook and professional training manual offering mathematical and conceptual insights that can be used to teach concepts, aid understanding of fundamentals, and act as a guide for sizing and designing practical systems.
This book includes the original, peer reviewed research articles from the 2nd International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA 2020), held in August, 2020 at Goa, India. It covers the latest research trends or developments in areas of data science, artificial intelligence, neural networks, cognitive science and machine learning applications, cyber physical systems and cybernetics.
The book is composed of two parts. The first part introduces the concepts of the design of digital systems using contemporary field-programmable gate arrays (FPGAs). Various design techniques are discussed and illustrated by examples. The operation and effectiveness of these techniques is demonstrated through experiments that use relatively cheap prototyping boards that are widely available. The book begins with easily understandable introductory sections, continues with commonly used digital circuits, and then gradually extends to more advanced topics. The advanced topics include novel techniques where parallelism is applied extensively. These techniques involve not only core reconfigurable logical elements, but also use embedded blocks such as memories and digital signal processing slices and interactions with general-purpose and application-specific computing systems. Fully synthesizable specifications are provided in a hardware-description language (VHDL) and are ready to be tested and incorporated in engineering designs. A number of practical applications are discussed from areas such as data processing and vector-based computations (e.g. Hamming weight counters/comparators). The second part of the book covers the more theoretical aspects of finite state machine synthesis with the main objective of reducing basic FPGA resources, minimizing delays and achieving greater optimization of circuits and systems.
This book provides the tools to enhance the precision, automation and intelligence of modern CNC machining systems. Based on a detailed description of the technical foundations of the machining monitoring system, it develops the general idea of design and implementation of smart machining monitoring systems, focusing on the tool condition monitoring system. The book is structured in two parts. Part I discusses the fundamentals of machining systems, including modeling of machining processes, mathematical basics of condition monitoring and the framework of TCM from a machine learning perspective. Part II is then focused on the applications of these theories. It explains sensory signal processing and feature extraction, as well as the cyber-physical system of the smart machining system. Its utilisation of numerous illustrations and diagrams explain the ideas presented in a clear way, making this book a valuable reference for researchers, graduate students and engineers alike.
This book offers ideas to help improve digital technologies and increase their efficiency during implementation and application for researchers and practitioners. The outstanding position of the book among others is that it dwells with cyber-physical systems' progress and proposes ideas and finding around digital tools and technologies and their application. A distinguished contribution is in presenting results on Digital Twins development and application, enhancing approaches of communication and information transferring between cyber-physical systems connected within the Internet of things platforms, computer linguistic as a part of cyber-physical systems, intelligent cybersecurity and computer vision systems. The target audience of this book also includes practitioners and experts, as well as state authorities and representatives of manufacturing and industry who are interested in creating and implementing of cyber-physical systems in framework of digitalization projects.
This book covers a variety of smart IoT applications for industry and research. For industry, the book is a guide for considering the real-time aspects of automation of application domains. The main topics covered in the industry section include real-time tracking and navigation, smart transport systems and application for GPS domains, modern electric grid control for electricity industry, IoT prospectives for modern society, IoT for modern medical science, and IoT automation for Industry 4.0. The book then provides a summary of existing IoT research that underlines enabling technologies, such as fog computing, wireless sensor networks, data mining, context awareness, real-time analytics, virtual reality, and cellular communications. The book pertains to researchers, outcome-based academic leaders, as well as industry leaders.
This book is dedicated to new mathematical instruments assigned for logical modeling of the memory of digital devices. The case in point is logic-dynamical operation named venjunction and venjunctive function as well as sequention and sequentional function. Venjunction and sequention operate within the framework of sequential logic. In a form of the corresponding equations, they organically fit analytical expressions of Boolean algebra. Thus, a sort of symbiosis is formed using elements of asynchronous sequential logic on the one hand and combinational logic on the other hand. So, asynchronous logic is represented in the form of enhanced Boolean logic. The book contains initial concepts, fundamental definitions, statements, principles and rules needed for theoretical justification of the mathematical apparatus and its validity for asynchronous logic. Asynchronous operators named venjunctor and sequentor are designed for practical implementation. These basic elements are assigned for realizing of memory functions in sequential circuits. Present research work is the final stage of generalization and systematization of all those ideas and investigations, author's interest to which alternately flashed up and faded over many years and for various reasons until formed "critical mass," and all findings were arranged definitively as a mathematical basis of a theory appropriately associated under a common theme - asynchronous sequential logic, essentially classified as switching logic, which falls into category of algebraic logics.
This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of machine learning-based data analytics of IoT infrastructures. This book is focused on the emerging trends, strategies, and applications of IoT in both healthcare and industry data analytics perspectives. The data analytics discussed are relevant for healthcare and industry to meet many technical challenges and issues that need to be addressed to realize this potential. The IoT discussed helps to design and develop the intelligent medical and industry solutions assisted by data analytics and machine learning. At the end of every chapter readers are encouraged to check their understanding by means of brainstorming summary, discussion, exercises and solutions.
In today's society, modern power grids are driven closer to transfer capacities due to increased consumption and power transfers, endangering the security of the systems. Providing methods in controlling variables to minimize costs, transmission loss, and voltage deviation of power system operation yields valuable economic information and insight into power flow. Optimal Power Flow Using Evolutionary Algorithms provides emerging research exploring the theoretical and practical aspects of optimizing power system operation through advanced electronic power devices. Featuring coverage on a broad range of topics such as hybridization algorithm, power system modeling, and transmission systems, this book is ideally designed for engineers, power system developers, academicians, and researchers seeking current research on emerging techniques in achieving quality power under normal operating conditions.
This book provides carefully designed illustrative examples to explain the profound in simpler terms. The emerging smart grid paradigm has paved the way for the wide introduction of flexible demand (FD) and energy storage (ES) technologies in power systems, with significant economic, technical, and environmental benefits that will facilitate efficient transition to the low-carbon future. In the deregulated energy sector, the realization of the significant FD and ES flexibility potential should be coupled with their suitable integration in electricity markets. In this context, previous studies have proposed market clearing mechanisms considering FD and ES participation and demonstrated their impact on the system operation. However, these studies have neglected fundamental market complexities, such as modeling and pricing FD non-convexities as well as modeling and analyzing the role of FD and ES in imperfect markets. This book is dedicated to address the above challenges through the development of novel computational methodologies. It also provides numerous explanatory figures, tables, algorithm flowcharts, and block diagrams for visual aid, which helps the readers to better grasp the working principles of the developed algorithms as well as to form a comprehensive comparison of results.
This book, based on international collaborative research, presents a state-of-the-art design for "Smart Master Planning" for all metropolises, megacities and metacities as well as at subcity zonal and community and neighborhood level. Smart Master Planning accepts that all cities are a smart city in making in a limited way as far as the six components for smart cities, namely smart people, smart economy, smart environment, smart mobility and smart governance are concerned. Smart Master Planning in any city can only be designed and executed by active roles of smart people and smart city government and is a joint and synchronous effort of e-democracy, e-governance and ICT-IOT system in a 24 hour 7-day framework on all activities. In addition to use of information and communication technologies and remote sensing, the design of Smart Master Planning utilizes domain-specific tools of many aspects of a city to realize the coordinated, effective and efficient planning, management, development and conservation that improve ecological, social, biophysical, psychological and economic wellbeing in an equitable manner without compromising the sustainability of development ecosystems and stakeholders. This book will present 12 case studies covering more than 12 cities or more cities centered on domain-specific smart planning components. Case studies of digital innovations in the Smart Master Planning include Application of Artificial Neural Network in Master Planning for cities, Smart Master Plan and 3 D GIS Planning Support System and Digital Spatial Master Planning Incorporating Machine to Machine Automation for Smart Economic Community (IoT, ICT and M2M based Digital Integration).
Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters investigates the feasibility of designing Delta-Sigma Analog to Digital Converters for very low supply voltage (lower than 1.5V) and low power operation in standard CMOS processes. The chosen technique of implementation is the Switched Opamp Technique which provides Switched Capacitor operation at low supply voltage without the need to apply voltage multipliers or low VtMOST devices. A method of implementing the classic single loop and cascaded Delta-Sigma modulator topologies with half delay integrators is presented. Those topologies are studied in order to find the parameters that maximise the performance in terms of peak SNR. Based on a linear model, the performance degradations of higher order single loop and cascaded modulators, compared to a hypothetical ideal modulator, are quantified. An overview of low voltage Switched Capacitor design techniques, such as the use of voltage multipliers, low VtMOST devices and the Switched Opamp Technique, is given. An in-depth discussion of the present status of the Switched Opamp Technique covers the single-ended Original Switched Opamp Technique, the Modified Switched Opamp Technique, which allows lower supply voltage operation, and differential implementation including common mode control techniques. The restrictions imposed on the analog circuits by low supply voltage operation are investigated. Several low voltage circuit building blocks, some of which are new, are discussed. A new low voltage class AB OTA, especially suited for differential Switched Opamp applications, together with a common mode feedback amplifier and a comparator are presented and analyzed. As part of asystematic top-down design approach, the non-ideal charge transfer of the Switched Opamp integrator cell is modeled, based upon several models of the main opamp non-ideal characteristics. Behavioral simulations carried out with these models yield the required opamp specifications that ensure that the intended performance is met in an implementation. A power consumption analysis is performed. The influence of all design parameters, especially the low power supply voltage, is highlighted. Design guidelines towards low power operation are distilled. Two implementations are presented together with measurement results. The first one is a single-ended implementation of a Delta-Sigma ADC operating with 1.5V supply voltage and consuming 100 &mgr;W for a 74 dB dynamic range in a 3.4 kHz bandwidth. The second implementation is differential and operates with 900 mV. It achieves 77 dB dynamic range in 16 kHz bandwidth and consumes 40 &mgr;W. Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters is essential reading for analog design engineers and researchers.
This book brings together real-world accounts of using voltage stability assessment (VSA) and transient stability assessment (TSA) tools for grid management. Chapters are written by leading experts in the field who have used these tools to manage their grids and can provide readers with a unique and international perspective. Case studies and success stories are presented by those who have used these tools in the field, making this book a useful reference for different utilities worldwide that are looking into implementing these tools, as well as students and practicing engineers who are interested in learning the real-time applications of VSA and TSA for grid operation.
This book provides a thorough guide to the use of numerical methods in energy systems and applications. It presents methods for analysing engineering applications for energy systems, discussing finite difference, finite element, and other advanced numerical methods. Solutions to technical problems relating the application of these methods to energy systems are also thoroughly explored. Readers will discover diverse perspectives of the contributing authors and extensive discussions of issues including: * a wide variety of numerical methods concepts and related energy systems applications;* systems equations and optimization, partial differential equations, and finite difference method;* methods for solving nonlinear equations, special methods, and their mathematical implementation in multi-energy sources;* numerical investigations of electrochemical fields and devices; and* issues related to numerical approaches and optimal integration of energy consumption. This is a highly informative and carefully presented book, providing scientific and academic insight for readers with an interest in numerical methods and energy systems.
This book exemplifies how smart buildings have a crucial role to play for the future of energy. The book investigates what already exists in regards to technologies, approaches and solutions both with a scientific and technological point of view. The authors cover solutions for mirroring and tracing human activities, optimal strategies to configure home settings, and generating explanations and persuasive dashboards to get occupants better committed in their home energy managements. Solutions are adapted from the fields of Internet of Things, physical modeling, optimization, machine learning and applied artificial intelligence. Practical applications are given throughout. |
You may like...
Discrete Fractional Calculus
Christopher Goodrich, Allan C. Peterson
Hardcover
R2,566
Discovery Miles 25 660
Positive Leadership for Flourishing…
Keith D Walker, Benjamin Kutsyuruba, …
Hardcover
R2,877
Discovery Miles 28 770
Continuum Mechanics and Applications in…
Brian Straughan, Ralf Greve, …
Hardcover
R2,871
Discovery Miles 28 710
Observation, Prediction and Simulation…
Marc Baus, L. F. Rull, …
Hardcover
R8,004
Discovery Miles 80 040
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,900
Discovery Miles 39 000
|