![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
This book intends to provide a comprehensive overview on different aspects of mechanisms and techniques for information security. It is written for students, researchers, and professionals studying in the field of multimedia security and steganography. Multimedia security and steganography is especially relevant due to the global scale of digital multimedia and the rapid growth of the Internet. Digital watermarking technology can be used to guarantee authenticity and can be applied as proof that the content has not been altered since insertion. Updated techniques and advances in watermarking are explored in this new edition. The combinational spatial and frequency domains watermarking technique provides a new concept of enlarging the embedding capacity of watermarks. The genetic algorithm (GA) based watermarking technique solves the rounding error problem and provide an efficient embedding approach. Each chapter provides the reader with a fundamental, theoretical framework, while developing the extensive advanced techniques and considering the essential principles of the digital watermarking and steganographic systems. Several robust algorithms that are presented throughout illustrate the framework and provide assistance and tools in understanding and implementing the fundamental principles.
Inspection is crucial to the management of ageing infrastructure. Visual information on structures is regularly collected but very little work exists on its organised and quantitative analysis, even though image processing can significantly enhance these inspection processes and transfer real financial and safety benefits to the managers, owners and users. Additionally, new opportunities exist in the fast evolving sectors of wind and wave energy to add value to image-based inspection techniques. This book is a first for structural engineers and inspectors who wish to harness the full potential of cameras as an inspection tool. It is particularly directed to the inspection of offshore and marine structures and the application of image-based methods in underwater inspections. It outlines a set of best practice guidelines for obtaining imagery, then the fundamentals of image processing are covered along with several image processing techniques which can be used to assess multiple damage forms: crack detection, corrosion detection, and depth analysis of marine growth on offshore structures. The book provides benchmark performance measures for these techniques under various visibility conditions using an image repository which will help inspectors to envisage the effectiveness of the techniques when applied. MATLAB (R) scripts and access to the underwater image repository are included so readers can run these techniques themselves. Practising engineers and managers of infrastructure assets are guided in image processing based inspection. Researchers can use this book as a primer, and it also suits advanced graduate courses in infrastructure management or on applied image processing.
The book provides copyright protection approaches for videos using watermarking. The various watermarking techniques using various transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT) and singular value decomposition (SVD) for videos are presented. The book also provides video watermarking approach using compressive sensing (CS) theory. The presented watermarking techniques are designed and implemented using color digital videos. The performance of the presented techniques is evaluated using Peak Signal to Noise Ratio (PSNR) and Normalized Correlation (NC).
Automatic biometrics recognition techniques are increasingly important in corporate and public security systems and have increased in methods due to rapid field development. This book discusses classic behavioral biometrics as well as collects the latest advances in techniques, theoretical approaches, and dynamic applications. This future-looking book is an important reference tool for researchers, practitioners, academicians, and technologists. While there are existing books that focus on physiological biometrics or algorithmic approaches deployed in biometrics, this book addresses a gap in the existing literature for a text that is solely dedicated to the topic of behavioral biometrics.
In today's world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Remote sensing of impervious surfaces has matured using advances in geospatial technology so recent that its applications have received only sporadic coverage in remote sensing literature. Remote Sensing of Impervious Surfaces is the first to focus entirely on this developing field. It provides detailed coverage of mapping, data extraction, and modeling techniques specific to analyzing impervious surfaces, such as roads and buildings. Written by renowned experts in the field, this book reviews the major approaches that apply to this emerging field as well as current challenges, developments, and trends. The authors introduce remote sensing digital image processing techniques for estimating and mapping impervious surfaces in urban and rural areas. Presenting the latest modeling tools and algorithms for data extraction and analysis, the book explains how to differentiate roads, roofs, and other manmade structures from remotely sensed images for individual analysis. The final chapters examine how to use impervious surface data for predicting the flow of storm- or floodwater and studying trends in population, land use, resource distribution, and other real-world applications in environmental, urban, and regional planning. Each chapter offers a consistent format including a concise review of basic concepts and methodologies, timely case studies, and guidance for solving problems and analyzing data using the techniques presented.
Over the past decade, the field of image processing has made tremendous advances. One type of image processing that is currently of particular interest is "tomographic imaging," a technique for computing the density function of a body, or discontinuity surfaces of this function. Today, tomography is widely used, and has applications in such fields as medicine, engineering, physics, geophysics, and security. The Radon Transform and Local Tomography clearly explains the theoretical, computational, and practical aspects of applied tomography. It includes sufficient background information to make it essentially self-contained for most readers.
Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.
The use of synthetic aperture radar (SAR) represents a new era in remote sensing technology. A complete handbook for anyone who must design an SAR system capable of reliably producing high quality image data products, free from image artifacts and calibrated in terms of the target backscatter coefficient. Combines fundamentals underlying the SAR imaging process and the practical system engineering required to produce quality images from a real SAR system. Beginning with a broad overview of SAR technology, it goes on to examine SAR system capabilities and components and detail the techniques required for design and development of the SAR ground data system with emphasis on the correlation processing. Intended for SAR system engineers and researchers, it is generously illustrated for maximum clarity.
This book provides insights into the benefits of using remote sensing data from a geoscientist's perspective, by integrating the data with the understanding of Earth's surface and subsurface. In 3 sections, the book takes a detailed look at what data explorationists use when they explore for hydrocarbon resources, assess different terrain types for planning and hazards and extract present-day geologic analogs for subsurface geologic settings. The book presents the usage of remote sensing data in exploration in a structured way by detecting individual geologic features as building blocks for complex geologic systems. This concept enables readers to build their own workflows for the assessment of complex geologic systems using various combinations of remote sensing data. Section 1 introduces readers to the foundations of remote sensing for exploration, covers various methods of image processing and studies different digital elevation and bathymetry models. Section 2 presents the concept of geomorphology as a means to integrate surface and subsurface data. Different aspects of rendering in 2D and 3D are explained and used for the interpretation and extraction of geologic features that are used in exploration. Section 3 addresses remote sensing for hydrocarbon exploration in detail, from geophysical data acquisition to development and infrastructure planning. The organization of this chapter follows an exploration workflow from regional to local modeling studying basin and petroleum system modeling as well as logistics planning of seismic surveys and near-surface modeling. Aspects of field development and infrastructure planning comprise multi-temporal and dynamic modeling. The section closes with a structured approach to extracting geologic analogs from interpreted remote sensing data. The book will be of interest to professionals and students working in exploration for hydrocarbons and water resources, as well as geoscientists and engineers using remote sensing for infrastructure planning, hazard assessment and dynamic environmental studies.
This much-needed text brings the treatment of optical pattern recognition up-to-date in one comprehensive resource. Optical pattern recognition, one of the first implementations of Fourier Optics, is now widely used, and this text provides an accessible introduction for readers who wish to get to grips with how holography is applied in a practical context. A wide range of devices are addressed from a user perspective and are accompanied with detailed tables enabling performance comparison, in addition to chapters exploring computer-generated holograms, optical correlator systems, and pattern matching algorithms. This book will appeal to both lecturers and research scientists in the field of electro-optic devices and systems. Features: Covers a range of new developments, including computer-generated holography and 3D image recognition Accessible without a range of prior knowledge, providing a clear exposition of technically difficult concepts Contains extensive examples throughout to reinforce learning
Find the right algorithm for your image processing application Exploring the recent achievements that have occurred since the mid-1990s, Circular and Linear Regression: Fitting Circles and Lines by Least Squares explains how to use modern algorithms to fit geometric contours (circles and circular arcs) to observed data in image processing and computer vision. The author covers all facets-geometric, statistical, and computational-of the methods. He looks at how the numerical algorithms relate to one another through underlying ideas, compares the strengths and weaknesses of each algorithm, and illustrates how to combine the algorithms to achieve the best performance. After introducing errors-in-variables (EIV) regression analysis and its history, the book summarizes the solution of the linear EIV problem and highlights its main geometric and statistical properties. It next describes the theory of fitting circles by least squares, before focusing on practical geometric and algebraic circle fitting methods. The text then covers the statistical analysis of curve and circle fitting methods. The last chapter presents a sample of "exotic" circle fits, including some mathematically sophisticated procedures that use complex numbers and conformal mappings of the complex plane. Essential for understanding the advantages and limitations of the practical schemes, this book thoroughly addresses the theoretical aspects of the fitting problem. It also identifies obscure issues that may be relevant in future research.
The main subject of the monograph is the fractional calculus in the discrete version. The volume is divided into three main parts. Part one contains a theoretical introduction to the classical and fractional-order discrete calculus where the fundamental role is played by the backward difference and sum. In the second part, selected applications of the discrete fractional calculus in the discrete system control theory are presented. In the discrete system identification, analysis and synthesis, one can consider integer or fractional models based on the fractional-order difference equations. The third part of the book is devoted to digital image processing.
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics together. By improving readers' knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader's skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book's web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.
Long used in undergraduate and introductory graduate courses, Astrophysical Techniques, Seventh Edition provides an accessible yet comprehensive account of the innovate instruments, detectors, and techniques employed in astronomy and astrophysics. Emphasizing the underlying unity of all astronomical observations, this popular textbook provides a coherent state-of-the-art account of the instruments and techniques used in current astronomy and astrophysics. Fully updated throughout, this seventh edition builds upon the sixth edition, covering improved techniques and cutting-edge methods in the field, as well as other exciting new developments in gravitational waves, dark matter and energy, the use of photonics, and astronomy education and outreach, in addition to further detailed discussions on the latest scientific instruments and individual detectors. The book is written in a very accessible manner, and most of the mathematics is accessible to those who have attended a mathematics course in their final years at school. Nevertheless, the treatment of the topics in general is at a sufficiently high level to be of use to those professionals seeking technical information in areas of astronomy with which they might not be completely familiar. Key Features: Details the instrumentation and theory of astronomical observations, including radio waves, gamma rays, cosmic rays, neutrinos, gravitational waves and dark matter and energy and more Presents the background theory and operating practice of state-of-the-art detectors and instruments Fully updated to contain the latest technology and research developments
Das Fachbuch liefert erstmals einen umfassenden Uberblick uber Konzeption, Produktion und Anwendung von 360 -Welten und erkundet damit die Potenziale eines neuen Marktes. Experten vermitteln den aktuellen Stand zu Themen wie den neurobiologischen Grundlagen, Story-Telling, Drehbuch, Visual Effects oder Projektionstechnologie. Daruber hinaus diskutieren sie Marketing- und Vertriebsfragen und geben einen Ausblick auf den Einsatz von Fullspace-Projektionen in Bildung, Entertainment und Medizin. Mit Projektskizzen als Beispiele fur Praxisanwendungen.
Medical image analysis using advanced fuzzy set theoretic techniques is an exciting and dynamic branch of image processing. Since the introduction of fuzzy set theory, there has been an explosion of interest in advanced fuzzy set theories-such as intuitionistic fuzzy and Type II fuzzy set-that represent uncertainty in a better way. Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques deals with the application of intuitionistic fuzzy and Type II fuzzy set theories for medical image analysis. Designed for graduate and doctorate students, this higher-level text: Provides a brief introduction to advanced fuzzy set theory, fuzzy/intuitionistic fuzzy aggregation operators, and distance/similarity measures Covers medical image enhancement using advanced fuzzy sets, including MATLAB (R)-based examples to increase contrast of the images Describes intuitionistic fuzzy and Type II fuzzy thresholding techniques that separate different regions/leukocyte types/abnormal lesions Demonstrates the clustering of unwanted lesions/regions even in the presence of noise by applying intuitionistic fuzzy clustering Highlights the edges of poorly illuminated images and uses intuitionistic fuzzy edge detection to find the edges of different regions Defines fuzzy mathematical morphology and explores its application using the Lukasiewicz operator, t-norms, and t-conorms Medical Image Processing: Advanced Fuzzy Set Theoretic Techniques is useful not only for students, but also for teachers, engineers, scientists, and those interested in the field of medical image analysis. A basic knowledge of fuzzy set is required, along with a solid understanding of mathematics and image processing.
This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
This is the third volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This book includes MATLAB codes to illustrate each of the main steps of the theory, offering a self-contained guide suitable for independent study. The code is embedded in the text, helping readers to put into practice the ideas and methods discussed. The book primarily focuses on filter banks, wavelets, and images. While the Fourier transform is adequate for periodic signals, wavelets are more suitable for other cases, such as short-duration signals: bursts, spikes, tweets, lung sounds, etc. Both Fourier and wavelet transforms decompose signals into components. Further, both are also invertible, so the original signals can be recovered from their components. Compressed sensing has emerged as a promising idea. One of the intended applications is networked devices or sensors, which are now becoming a reality; accordingly, this topic is also addressed. A selection of experiments that demonstrate image denoising applications are also included. In the interest of reader-friendliness, the longer programs have been grouped in an appendix; further, a second appendix on optimization has been added to supplement the content of the last chapter.
Remote Sensing Image Fusion: A Practical Guide gives an introduction to remote sensing image fusion providing an overview on the sensors and applications. It describes data selection, application requirements and the choice of a suitable image fusion technique. It comprises a diverse selection of successful image fusion cases that are relevant to other users and other areas of interest around the world. The book helps newcomers to obtain a quick start into the practical value and benefits of multi-sensor image fusion. Experts will find this book useful to obtain an overview on the state of the art and understand current constraints that need to be solved in future research efforts. For industry professionals the book can be a great introduction and basis to understand multisensor remote sensing image exploitation and the development of commercialized image fusion software from a practical perspective. The book concludes with a chapter on current trends and future developments in remote sensing image fusion. Along with the book, RSIF website provides additional up-to-date information in the field.
Sir William Rowan Hamilton was a genius, and will be remembered for his significant contributions to physics and mathematics. The Hamiltonian, which is used in quantum physics to describe the total energy of a system, would have been a major achievement for anyone, but Hamilton also invented quaternions, which paved the way for modern vector analysis. Quaternions are one of the most documented inventions in the history of mathematics, and this book is about their invention, and how they are used to rotate vectors about an arbitrary axis. Apart from introducing the reader to the features of quaternions and their associated algebra, the book provides valuable historical facts that bring the subject alive. Quaternions for Computer Graphics introduces the reader to quaternion algebra by describing concepts of sets, groups, fields and rings. It also includes chapters on imaginary quantities, complex numbers and the complex plane, which are essential to understanding quaternions. The book contains many illustrations and worked examples, which make it essential reading for students, academics, researchers and professional practitioners.
Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. It explores applications of statistical signal processing to hyperspectral imaging and further develops non-literal (spectral) techniques for subpixel detection and mixed pixel classification. This text is the first of its kind on the topic and can be considered a recipe book offering various techniques for hyperspectral data exploitation. In particular, some known techniques, such as OSP (Orthogonal Subspace Projection) and CEM (Constrained Energy Minimization) that were previously developed in the RSSIPL, are discussed in great detail. This book is self-contained and can serve as a valuable and useful reference for researchers in academia and practitioners in government and industry.
The book familiarizes readers with fundamental concepts and issues related to computer vision and major approaches that address them. The focus of the book is on image acquisition and image formation models, radiometric models of image formation, image formation in the camera, image processing concepts, concept of feature extraction and feature selection for pattern classification/recognition, and advanced concepts like object classification, object tracking, image-based rendering, and image registration. Intended to be a companion to a typical teaching course on computer vision, the book takes a problem-solving approach.
This book proceedings collects a number of papers presented at the International Conference on Sensing and Imaging, which was held at Guangxi University of Science and Technology from October 15-18, 2018. Sensing and imaging is an interdisciplinary field covering a variety of sciences and techniques such as optics, electricity, magnetism, heat, sound, and computing technologies. The field has diverse applications of interest such as image processing techniques.The results in the book bridge the gap between theory and applications, translating techniques into better products. The text will appeal to students, professionals and researchers alike.
Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with fractals, rather than the typical line-drawing algorithms found in many standard texts. He also brings the turtle back from obscurity to introduce several major concepts in computer graphics. Supplying the mathematical foundations, the book covers linear algebra topics, such as vector geometry and algebra, affine and projective spaces, affine maps, projective transformations, matrices, and quaternions. The main graphics areas explored include reflection and refraction, recursive ray tracing, radiosity, illumination models, polygon shading, and hidden surface procedures. The book also discusses geometric modeling, including planes, polygons, spheres, quadrics, algebraic and parametric curves and surfaces, constructive solid geometry, boundary files, octrees, interpolation, approximation, Bezier and B-spline methods, fractal algorithms, and subdivision techniques. Making the material accessible and relevant for years to come, the text avoids descriptions of current graphics hardware and special programming languages. Instead, it presents graphics algorithms based on well-established physical models of light and cogent mathematical methods. |
![]() ![]() You may like...
Java and the Java Virtual Machine…
Robert F. Stark, Joachim Schmid, …
Hardcover
R1,576
Discovery Miles 15 760
Smart and Sustainable Collaborative…
Luis M. Camarinha-Matos, Xavier Boucher, …
Hardcover
R6,500
Discovery Miles 65 000
Fundamentals of Spatial Information…
Robert Laurini, Derek Thompson
Hardcover
R1,539
Discovery Miles 15 390
Gcse Geography Aqa Revision Guide (with…
CGP Books
Mixed media product
![]() R263 Discovery Miles 2 630
Cattle Of The Ages - Stories And…
Cyril Ramaphosa
Hardcover
![]()
|