![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Image processing > General
This book presents in a systematic manner the advanced technologies used for various modern robot applications. By bringing fresh ideas, new concepts, novel methods and tools into robot control, robot vision, human robot interaction, teleoperation of robot and multiple robots system, we are to provide a state-of-the-art and comprehensive treatment of the advanced technologies for a wide range of robotic applications. Particularly, we focus on the topics of advanced control and obstacle avoidance techniques for robot to deal with unknown perturbations, of visual servoing techniques which enable robot to autonomously operate in a dynamic environment, and of advanced techniques involved in human robot interaction. The book is primarily intended for researchers and engineers in the robotic and control community. It can also serve as complementary reading for robotics at the both graduate and undergraduate levels.
1 Introduction.- 2 Continuous-Time Quadratic Guaranteed Cost Filtering.- 3 Discrete-Time Quadratic Guaranteed Cost Filtering.- 4 Continuous-Time Set-Valued State Estimation and Model Validation.- 5 Discrete-Time Set-Valued State Estimation.- 6 Robust State Estimation with Discrete and Continuous Measurements.- 7 Set-Valued State Estimation with Structured Uncertainty.- 8 Robust H? Filtering with Structured Uncertainty.- 9 Robust Fixed Order H? Filtering.- 10 Set-Valued State Estimation for Nonlinear Uncertain Systems.- 11 Robust Filtering Applied to Induction Motor Control.- References.
The analysis of QoE is not an easy task, especially for multimedia services, because all the factors (technical and non-technical) that directly or indirectly influence the user-perceived quality have to be considered. This book describes different methods to investigate users' QoE from the viewpoint of technical and non-technical parameters using multimedia services. It discusses the subjective methods for both controlled and uncontrolled environments. Collected datasets are used to analyze users' profiles, which sheds light on key factors to help network service providers understand end-users' behavior and expectations. Important adaptive video streaming technologies are discussed that run on unmanaged networks to achieve certain QoS features. The authors present a scheduling method to allocate resources to the end-user based on users' QoE and optimizes the power efficiency of users' device for LTE-A. Lastly, two key aspects of 5G networks are presented: QoE using multimedia services (VoIP and video), and power-saving model for mobile device and virtual base station.
This edition presents the most prominent topics and applications of digital image processing, analysis, and computer graphics in the field of cultural heritage preservation. The text assumes prior knowledge of digital image processing and computer graphics fundamentals. Each chapter contains a table of contents, illustrations, and figures that elucidate the presented concepts in detail, as well as a chapter summary and a bibliography for further reading. Well-known experts cover a wide range of topics and related applications, including spectral imaging, automated restoration, computational reconstruction, digital reproduction, and 3D models.
Image Restoration: Fundamentals and Advances responds to the need to update most existing references on the subject, many of which were published decades ago. Providing a broad overview of image restoration, this book explores breakthroughs in related algorithm development and their role in supporting real-world applications associated with various scientific and engineering fields. These include astronomical imaging, photo editing, and medical imaging, to name just a few. The book examines how such advances can also lead to novel insights into the fundamental properties of image sources. Addressing the many advances in imaging, computing, and communications technologies, this reference strikes just the right balance of coverage between core fundamental principles and the latest developments in this area. Its content was designed based on the idea that the reproducibility of published works on algorithms makes it easier for researchers to build on each other's work, which often benefits the vitality of the technical community as a whole. For that reason, this book is as experimentally reproducible as possible. Topics covered include: Image denoising and deblurring Different image restoration methods and recent advances such as nonlocality and sparsity Blind restoration under space-varying blur Super-resolution restoration Learning-based methods Multi-spectral and color image restoration New possibilities using hybrid imaging systems Many existing references are scattered throughout the literature, and there is a significant gap between the cutting edge in image restoration and what we can learn from standard image processing textbooks. To fill that need but avoid a rehash of the many fine existing books on this subject, this reference focuses on algorithms rather than theories or applications. Giving readers access to a large amount of downloadable source code, the book illustrates fundamental techniques, key ideas developed over the years, and the state of the art in image restoration. It is a valuable resource for readers at all levels of understanding.
In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications-and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological mechanisms and techniques and their relation to image processing. More than merely a tutorial on vital technical information, the book places this knowledge into a theoretical framework. This helps readers analyze key principles and architectures and then use the author's novel ideas on implementation of advanced algorithms to formulate a practical and detailed plan to develop and foster their own ideas. The book: Presents the history and state-of-the-art techniques related to image morphological processing, with numerous practical examples Gives readers a clear tutorial on complex technology and other tools that rely on their intuition for a clear understanding of the subject Includes an updated bibliography and useful graphs and illustrations Examines several new algorithms in great detail so that readers can adapt them to derive their own solution approaches This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.
Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs-which are suitable to represent any discrete data by modeling neighborhood relationships-have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.
Corona SDK is one of the most powerful tools used to create games and apps for mobile devices. The market requires speed; new developers need to operate quickly and efficiently. Create 2D Mobile Games with Corona SDK gives you the tools needed to master Corona - even within the framework of professional constraints. A must-read guide, this book gives you fast, accurate tips to learn the programming language necessary to create games. Read it sequentially or as an FAQ and you will have the tools you need to create any base game before moving on to advanced topics. The tutorial-based format: Contains step-by-step directions complete with coding and screenshots Is filled with tutorials, tips, and links to useful online resources Includes a comprehensive companion website featuring online exercise files to practice coding, full build samples from the text, additional book details, and more!
Avoiding heavy mathematics and lengthy programming details, Digital Image Processing: An Algorithmic Approach with MATLAB (R) presents an easy methodology for learning the fundamentals of image processing. The book applies the algorithms using MATLAB (R), without bogging down students with syntactical and debugging issues. One chapter can typically be completed per week, with each chapter divided into three sections. The first section presents theoretical topics in a very simple and basic style with generic language and mathematics. The second section explains the theoretical concepts using flowcharts to streamline the concepts and to form a foundation for students to code in any programming language. The final section supplies MATLAB codes for reproducing the figures presented in the chapter. Programming-based exercises at the end of each chapter facilitate the learning of underlying concepts through practice. This textbook equips undergraduate students in computer engineering and science with an essential understanding of digital image processing. It will also help them comprehend more advanced topics and sophisticated mathematical material in later courses. A color insert is included in the text while various instructor resources are available on the author's website.
Managing and Mining Graph Data is a comprehensive survey book in
graph management and mining. It contains extensive surveys on a
variety of important graph topics such as graph languages,
indexing, clustering, data generation, pattern mining,
classification, keyword search, pattern matching, and privacy. It
also studies a number of domain-specific scenarios such as stream
mining, web graphs, social networks, chemical and biological data.
The chapters are written by well known researchers in the field,
and provide a broad perspective of the area. This is the first
comprehensive survey book in the emerging topic of graph data
processing.
As one of the most promising biometric technologies, vein pattern recognition (VPR) is quickly taking root around the world and may soon dominate applications where people focus is key. Among the reasons for VPR's growing acceptance and use: it is more accurate than many other biometric methods, it offers greater resistance to spoofing, it focuses on people and their privacy, and has few negative cultural connotations. Vein Pattern Recognition: A Privacy-Enhancing Biometric provides a comprehensive and practical look at biometrics in general and at vein pattern recognition specifically. It discusses the emergence of this reliable but underutilized technology and evaluates its capabilities and benefits. The author, Chuck Wilson, an industry veteran with more than 25 years of experience in the biometric and electronic security fields, examines current and emerging VPR technology along with the myriad applications of this dynamic technology. Wilson explains the use of VPR and provides an objective comparison of the different biometric methods in use today-including fingerprint, eye, face, voice recognition, and dynamic signature verification. Highlighting current VPR implementations, including its widespread acceptance and use for identity verification in the Japanese banking industry, the text provides a complete examination of how VPR can be used to protect sensitive information and secure critical facilities. Complete with best-practice techniques, the book supplies invaluable guidance on selecting the right combination of biometric technologies for specific applications and on properly implementing VPR as part of an overall security system.
Consistently rated as the best overall introduction to computer-based image processing, The Image Processing Handbook covers two-dimensional (2D) and three-dimensional (3D) imaging techniques, image printing and storage methods, image processing algorithms, image and feature measurement, quantitative image measurement analysis, and more. Incorporating image processing and analysis examples at all scales, from nano- to astro-, this Seventh Edition: Features a greater range of computationally intensive algorithms than previous versions Provides better organization, more quantitative results, and new material on recent developments Includes completely rewritten chapters on 3D imaging and a thoroughly revamped chapter on statistical analysis Contains more than 1700 references to theory, methods, and applications in a wide variety of disciplines Presents 500+ entirely new figures and images, with more than two-thirds appearing in color The Image Processing Handbook, Seventh Edition delivers an accessible and up-to-date treatment of image processing, offering broad coverage and comparison of algorithms, approaches, and outcomes.
Broad in scope, Semantic Multimedia Analysis and Processing provides a complete reference of techniques, algorithms, and solutions for the design and the implementation of contemporary multimedia systems. Offering a balanced, global look at the latest advances in semantic indexing, retrieval, analysis, and processing of multimedia, the book features the contributions of renowned researchers from around the world. Its contents are based on four fundamental thematic pillars: 1) information and content retrieval, 2) semantic knowledge exploitation paradigms, 3) multimedia personalization, and 4) human-computer affective multimedia interaction. Its 15 chapters cover key topics such as content creation, annotation and modeling for the semantic web, multimedia content understanding, and efficiency and scalability. Fostering a deeper understanding of a popular area of research, the text: Describes state-of-the-art schemes and applications Supplies authoritative guidance on research and deployment issues Presents novel methods and applications in an informative and reproducible way Contains numerous examples, illustrations, and tables summarizing results from quantitative studies Considers ongoing trends and designates future challenges and research perspectives Includes bibliographic links for further exploration Uses both SI and US units Ideal for engineers and scientists specializing in the design of multimedia systems, software applications, and image/video analysis and processing technologies, Semantic Multimedia Analysis and Processing aids researchers, practitioners, and developers in finding innovative solutions to existing problems, opening up new avenues of research in uncharted waters.
As multimedia applications have become part of contemporary daily life, numerous paradigm-shifting technologies in multimedia processing have emerged over the last decade. Substantially updated with 21 new chapters, Multimedia Image and Video Processing, Second Edition explores the most recent advances in multimedia research and applications. This edition presents a comprehensive treatment of multimedia information mining, security, systems, coding, search, hardware, and communications as well as multimodal information fusion and interaction. Clearly divided into seven parts, the book begins with a section on standards, fundamental methods, design issues, and typical architectures. It then focuses on the coding of video and multimedia content before covering multimedia search, retrieval, and management. After examining multimedia security, the book describes multimedia communications and networking and explains the architecture design and implementation for multimedia image and video processing. It concludes with a section on multimedia systems and applications. Written by some of the most prominent experts in the field, this updated edition provides readers with the latest research in multimedia processing and equips them with advanced techniques for the design of multimedia systems.
With rapid progress in Internet and digital imaging technology, there are more and more ways to easily create, publish, and distribute images. Considered the first book to focus on the relationship between digital imaging and privacy protection, Visual Cryptography and Secret Image Sharing is a complete introduction to novel security methods and sharing-control mechanisms used to protect against unauthorized data access and secure dissemination of sensitive information. Image data protection and image-based authentication techniques offer efficient solutions for controlling how private data and images are made available only to select people. Essential to the design of systems used to manage images that contain sensitive data-such as medical records, financial transactions, and electronic voting systems-the methods presented in this book are useful to counter traditional encryption techniques, which do not scale well and are less efficient when applied directly to image files. An exploration of the most prominent topics in digital imaging security, this book discusses: Potential for sharing multiple secrets Visual cryptography schemes-based either on the probabilistic reconstruction of the secret image, or on different logical operations for combining shared images Inclusion of pictures in the distributed shares Contrast enhancement techniques Color-image visual cryptography Cheating prevention Alignment problems for image shares Steganography and authentication In the continually evolving world of secure image sharing, a growing number of people are becoming involved as new applications and business models are being developed all the time. This contributed volume gives academicians, researchers, and professionals the insight of well-known experts on key concepts, issues, trends, and technologies in this emerging field.
The book is a collection of invited chapters by experts in Chinese document and text processing, and is part of a series on Language Processing, Pattern Recognition, and Intelligent Systems. The chapters introduce the latest advances and state-of-the-art methods for Chinese document image analysis and recognition, font design, text analysis and speaker recognition. Handwritten Chinese character recognition and text line recognition are at the core of document image analysis (DIA), and therefore, are addressed in four chapters for different scripts (online characters, offline characters, ancient characters, and text lines). Two chapters on character recognition pay much attention to deep convolutional neural networks (CNNs), which are widely used and performing superiorly in various pattern recognition problems. A chapter is contributed to describe a large handwriting database consisting both online and offline characters and text pages. Postal mail reading and writer identification, addressed in two chapters, are important applications of DIA. The collection can serve as reference for students and engineers in Chinese document and text processing and their applications.
The book has two intentions. First, it assembles the latest research in the field of medical imaging technology in one place. Detailed descriptions of current state-of-the-art medical imaging systems (comprised of x-ray CT, MRI, ultrasound, and nuclear medicine) and data processing techniques are discussed. Information is provided that will give interested engineers and scientists a solid foundation from which to build with additional resources. Secondly, it exposes the reader to myriad applications that medical imaging technology has enabled.
Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of traditional imaging methods. Filling a gap in the literature, Perceptual Digital Imaging: Methods and Applications comprehensively covers the system design, implementation, and application aspects of this emerging specialized area. It gives readers a strong, fundamental understanding of theory and methods, providing a foundation on which solutions for many of the most interesting and challenging imaging problems can be built. The book features contributions by renowned experts who present the state of the art and recent trends in image acquisition, processing, storage, display, and visual quality evaluation. They detail advances in the field and explore human visual system-driven approaches across a broad spectrum of applications, including: Image quality and aesthetics assessment Digital camera imaging White balancing and color enhancement Thumbnail generation Image restoration Super-resolution imaging Digital halftoning and dithering Color feature extraction Semantic multimedia analysis and processing Video shot characterization Image and video encryption Display quality enhancement This is a valuable resource for readers who want to design and implement more effective solutions for cutting-edge digital imaging, computer vision, and multimedia applications. Suitable as a graduate-level textbook or stand-alone reference for researchers and practitioners, it provides a unique overview of an important and rapidly developing research field.
Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analyzing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, and so on. MM is not only a "theory", but also a powerful image analysis "technique". The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of 45 contributions classified by subject. It demonstrates a range of topics suited to the morphological approach.
"John Russ is the master of explaining how image processing gets applied to real-world situations. With Brent Neal, he's done it again in Measuring Shape, this time explaining an expanded toolbox of techniques that includes useful, state-of-the-art methods that can be applied to the broad problem of understanding, characterizing, and measuring shape. He has a gift for finding the kernel of a particular algorithm, explaining it in simple terms, then giving concrete examples that are easily understood. His perspective comes from solving real-world problems and separating out what works in practice from what is just an abstract curiosity." -Tom Malzbender, Hewlett-Packard Laboratories, Palo Alto, California, USA Useful for those working in fields including industrial quality control, research, and security applications, Measuring Shape is a handbook for the practical application of shape measurement. Covering a wide range of shape measurements likely to be encountered in the literature and in software packages, this book presents an intentionally diverse set of examples that illustrate and enable readers to compare methods used for measurement and quantitative description of 2D and 3D shapes. It stands apart through its focus on examples and applications, which help readers quickly grasp the usefulness of presented techniques without having to approach them through the underlying mathematics. An elusive concept, shape is a principal governing factor in determining the behavior of objects and structures. Essential to recognizing and classifying objects, it is the central link in manmade and natural processes. Shape dictates everything from the stiffness of a construction beam, to the ability of a leaf to catch water, to the marketing and packaging of consumer products. This book emphasizes techniques that are quantitative and produce a meaningful yet compact set of numerical values that can be used for statistical analysis, comparison, correlation, classification, and identification. Written by two renowned authors from both industry and academia, this resource explains why users should select a particular method, rather than simply discussing how to use it. Showcasing each process in a clear, accessible, and well-organized way, they explore why a particular one might be appropriate in a given situation, yet a poor choice in another. Providing extensive examples, plus full mathematical descriptions of the various measurements involved, they detail the advantages and limitations of each method and explain the ways they can be implemented to discover important correlations between shape and object history or behavior. This uncommon assembly of information also includes sets of data on real-world objects that are used to compare the performance and utility of the various presented approaches.
Providing specific knowledge in the theory of image analysis, optics, fluorescence, and imaging devices in biomedical laboratories, this timely and indispensable volume focuses on the theory and applications of detection, morphometry, and motility measurement techniques applied to bacteria, fungi, yeasts and protozoa.
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.
It has long been a dream to realize machines with flexible visual perception capability. Research on digital image processing by computers was initiated about 30 years ago, and since then a wide variety of image processing algorithms have been devised. Using such image processing algorithms and advanced hardware technologies, many practical ma chines with visual recognition capability have been implemented and are used in various fields: optical character readers and design chart readers in offices, position-sensing and inspection systems in factories, computer tomography and medical X-ray and microscope examination systems in hospitals, and so on. Although these machines are useful for specific tasks, their capabilities are limited. That is, they can analyze only simple images which are recorded under very carefully adjusted photographic conditions: objects to be recognized are isolated against a uniform background and under well-controlled artificial lighting. In the late 1970s, many image understanding systems were de veloped to study the automatic interpretation of complex natural scenes. They introduced artificial intelligence techniques to represent the knowl edge about scenes and to realize flexible control structures. The first author developed an automatic aerial photograph interpretation system based on the blackboard model (Naga1980). Although these systems could analyze fairly complex scenes, their capabilities were still limited; the types of recognizable objects were limited and various recognition vii viii Preface errors occurred due to noise and the imperfection of segmentation algorithms."
This textbook covers the theoretical backgrounds and practical aspects of image, video and audio feature expression, e.g., color, texture, edge, shape, salient point and area, motion, 3D structure, audio/sound in time, frequency and cepstral domains, structure and melody. Up-to-date algorithms for estimation, search, classification and compact expression of feature data are described in detail. Concepts of signal decomposition (such as segmentation, source tracking and separation), as well as composition, mixing, effects, and rendering, are discussed. Numerous figures and examples help to illustrate the aspects covered. The book was developed on the basis of a graduate-level university course, and most chapters are supplemented by problem-solving exercises. The book is also a self-contained introduction both for researchers and developers of multimedia content analysis systems in industry.
The first edition of this text book focussed on providing practical hands-on experience in digital imaging techniques for graduate students and practitioners keeping to a minimum any detailed discussion on the underlying theory. In this new extended edition, the author builds on the strength of the original edition by expanding the coverage to include formulation of the major theoretical results that underlie the exercises as well as introducing numerous modern concepts and new techniques. Whether you are studying or already using digital imaging techniques, developing proficiency in the subject is not possible without mastering practical skills. Including more than 100 MATLAB (R) exercises, this book delivers a complete applied course in digital imaging theory and practice. |
You may like...
Computational Retinal Image Analysis…
Emanuele Trucco, Tom MacGillivray, …
Paperback
R3,280
Discovery Miles 32 800
Image Processing for Automated Diagnosis…
Kalpana Chauhan, Rajeev Kumar Chauhan
Paperback
R3,487
Discovery Miles 34 870
Cardiovascular and Coronary Artery…
Ayman S. El-Baz, Jasjit S. Suri
Paperback
R3,802
Discovery Miles 38 020
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
MatConvNet Deep Learning and iOS Mobile…
Jiann-Ming Wu, Chao-Yuan Tien
Hardcover
R4,847
Discovery Miles 48 470
Recent Trends in Computer-aided…
Saptarshi Chatterjee, Debangshu Dey, …
Paperback
R2,570
Discovery Miles 25 700
|