![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
This volume on virtual and augmented reality (VR/AR) and gamification for cultural heritage offers an insightful introduction to the theories, development, recent applications and trends of the enabling technologies for mixed reality and gamified interaction in cultural heritage and creative industries in general. It has two main goals: serving as an introductory textbook to train beginning and experienced researchers in the field of interactive digital cultural heritage, and offering a novel platform for researchers in and across the culturally-related disciplines. To this end, it is divided into two sections following a pedagogical model developed by the focus group of the first EU Marie S. Curie Fellowship Initial Training Network on Digital Cultural Heritage (ITN-DCH): Section I describes recent advances in mixed reality enabling technologies, while section II presents the latest findings on interaction with 3D tangible and intangible digital cultural heritage. The sections include selected contributions from some of the most respected scholars, researchers and professionals in the fields of VR/AR, gamification, and digital heritage. This book is intended for all heritage professionals, researchers, lecturers and students who wish to explore the latest mixed reality and gamification technologies in the context of cultural heritage and creative industries. It pursues a pedagogic approach based on trainings, conferences, workshops and summer schools that the ITN-DCH fellows have been following in order to learn how to design next-generation virtual heritage applications, systems and services.
This book presents the state of the art in online visual tracking, including the motivations, practical algorithms, and experimental evaluations. Visual tracking remains a highly active area of research in Computer Vision and the performance under complex scenarios has substantially improved, driven by the high demand in connection with real-world applications and the recent advances in machine learning. A large variety of new algorithms have been proposed in the literature over the last two decades, with mixed success. Chapters 1 to 6 introduce readers to tracking methods based on online learning algorithms, including sparse representation, dictionary learning, hashing codes, local model, and model fusion. In Chapter 7, visual tracking is formulated as a foreground/background segmentation problem, and tracking methods based on superpixels and end-to-end deep networks are presented. In turn, Chapters 8 and 9 introduce the cutting-edge tracking methods based on correlation filter and deep learning. Chapter 10 summarizes the book and points out potential future research directions for visual tracking. The book is self-contained and suited for all researchers, professionals and postgraduate students working in the fields of computer vision, pattern recognition, and machine learning. It will help these readers grasp the insights provided by cutting-edge research, and benefit from the practical techniques available for designing effective visual tracking algorithms. Further, the source codes or results of most algorithms in the book are provided at an accompanying website.
This "bible" of a whole generation of communications engineers was
originally published in 1958. The focus is on the statistical
theory underlying the study of signals and noises in communications
systems, emphasizing techniques as well s results. End of chapter
problems are provided.
This book covers two essential PDE-based image processing fields: image denoising and image inpainting. It describes the state-of-the-art PDE-based image restoration and interpolation (inpainting) techniques, focusing on the latest advances in PDE-based image processing and analysis, and explores novel techniques involving diffusion-based models and variational schemes. The PDE and variational schemes clearly outperform the conventional approaches in these areas, and can successfully remove image noise and reconstruct missing or highly degraded regions, while preserving the essential features and avoiding unintended effects. The book addresses researchers and graduate students, but is also well suited for professionals in both the mathematics and electrical engineering domains, as it provides rigorous mathematical investigations of the image processing models described, as well as mathematical treatments for the numerical approximation schemes of these differential models.
Visualisation and Processing of Tensor Fields provides researchers an inspirational look at how to process and visualize complicated 2D and 3D images known as tensor fields. Tensor fields are the natural representation for many physical quantities; they can describe how water moves around in the brain, how gravity varies around the earth, or how materials are stressed and deformed. With its numerous color figures, this book helps the reader understand both the underlying mathematics and the applications of tensor fields. The reader also will learn about the most recent research topics and open research questions.
This book systematically analyses the latest insights into night vision imaging processing and perceptual understanding as well as related theories and methods. The algorithm model and hardware system provided can be used as the reference basis for the general design, algorithm design and hardware design of photoelectric systems. Focusing on the differences in the imaging environment, target characteristics, and imaging methods, this book discusses multi-spectral and video data, and investigates a variety of information mining and perceptual understanding algorithms. It also assesses different processing methods for multiple types of scenes and targets.Taking into account the needs of scientists and technicians engaged in night vision optoelectronic imaging detection research, the book incorporates the latest international technical methods. The content fully reflects the technical significance and dynamics of the new field of night vision. The eight chapters cover topics including multispectral imaging, Hadamard transform spectrometry; dimensionality reduction, data mining, data analysis, feature classification, feature learning; computer vision, image understanding, target recognition, object detection and colorization algorithms, which reflect the main areas of research in artificial intelligence in night vision. The book enables readers to grasp the novelty and practicality of the field and to develop their ability to connect theory with real-world applications. It also provides the necessary foundation to allow them to conduct research in the field and adapt to new technological developments in the future.
Nonlinear is a buzzword for every broadcaster and facility house worldwide. Systems range from the humble to the exotic, and despite the growing acceptance of the technology, many users, both new and experienced, find the complexity of the operation and the time spent loading the material and rendering effects difficult to manage at first. Non-linear editing also comes with its own specialist language, requiring each editor to be conversant with a new range of skills from day one. As desktop systems improve the role of the traditional editor is constantly evolving and expanding. This is an operational manual for professional trainees and students in the post-production industry. It will also serve as a useful reference tool for producers and directors. Written in a concise and clear manner, the book serves as a practical guide to the efficient management and operation of non-linear editing systems. It describes the technology involved, the essential techniques to be mastered including on-line and off-line editing, project management, rendering effects, working with graphics and audio, and adding third party applications. Designed for quick and easy reference, this is a practical user guide to non-linear editing that comes complete with an extensive jargon buster that will get you fully conversant with the technology in a short space of time. Patrick Morris is a Trainer in Post-Production for the Television Corporation of Singapore and the Singapore Broadcasting Authority as well as Chairman of the South East Asia User Group. He is an AVID Certified Trainer with a working knowledge of Lightworks, Media 100, Quantel, D Vision and other systems. Formerly a consultant and Senior Editor for BBC, ITV and SKY TV, he also spent many years a Training Manager for BBC Wood Norton and as Senior Video-Tape Editor for Television South West.
This work is dedicated to CMOS based imaging with the emphasis on the noise modeling, characterization and optimization in order to contribute to the design of high performance imagers in general and range imagers in particular. CMOS is known to be superior to CCD due to its flexibility in terms of integration capabilities, but typically has to be enhanced to compete at parameters as for instance noise, dynamic range or spectral response. Temporal noise is an important topic, since it is one of the most crucial parameters that ultimately limits the performance and cannot be corrected. This work gathers the widespread theory on noise and extends the theory by a non-rigorous but potentially computing efficient algorithm to estimate noise in time sampled systems. This work contributed to two generations of LDPD based ToF range image sensors and proposed a new approach to implement the MSI PM ToF principle. This was verified to yield a significantly faster charge transfer, better linearity, dark current and matching performance. A non-linear and time-variant model is provided that takes into account undesired phenomena such as finite charge transfer speed and a parasitic sensitivity to light when the shutters should remain OFF, to allow for investigations of largesignal characteristics, sensitivity and precision. It was demonstrated that the model converges to a standard photodetector model and properly resembles the measurements. Finally the impact of these undesired phenomena on the range measurement performance is demonstrated.
This thesis discusses the physical and information theoretical limits of optical 3D metrology, and, based on these principal considerations, introduces a novel single-shot 3D video camera that works close to these limits. There are serious obstacles for a "perfect" 3D-camera: The author explains that it is impossible to achieve a data density better than one third of the available video pixels. Available single-shot 3D cameras yet display much lower data density, because there is one more obstacle: The object surface must be "encoded" in a non-ambiguous way, commonly by projecting sophisticated patterns. However, encoding devours space-bandwidth and reduces the output data density. The dissertation explains how this profound dilemma of 3D metrology can be solved, exploiting just two synchronized video cameras and a static projection pattern. The introduced single-shot 3D video camera, designed for macroscopic live scenes, displays an unprecedented quality and density of the 3D point cloud. The lateral resolution and depth precision are limited only by physics. Like a hologram, each movie-frame encompasses the full 3D information about the object surface and the observation perspective can be varied while watching the 3D movie.
This book brings together several advanced topics in computer graphics that are important in the areas of game development, three-dimensional animation and real-time rendering. The book is designed for final-year undergraduate or first-year graduate students, who are already familiar with the basic concepts in computer graphics and programming. It aims to provide a good foundation of advanced methods such as skeletal animation, quaternions, mesh processing and collision detection. These and other methods covered in the book are fundamental to the development of algorithms used in commercial applications as well as research.
The current popular and scientific interest in virtual environments has provided a new impetus for investigating binaural and spatial hearing. However, the many intriguing phenomena of spatial hearing have long made it an exciting area of scientific inquiry. Psychophysical and physiological investigations of spatial hearing seem to be converging on common explanations of underlying mechanisms. These understandings have in turn been incorporated into sophisticated yet mathematically tractable models of binaural interaction. Thus, binaural and spatial hearing is one of the few areas in which professionals are soon likely to find adequate physiological explanations of complex psychological phenomena that can be reasonably and usefully approximated by mathematical and physical models. This volume grew out of the Conference on Binaural and Spatial Hearing, a four-day event held at Wright-Patterson Air Force Base in response to rapid developments in binaural and spatial hearing research and technology. Meant to be more than just a proceedings, it presents chapters that are longer than typical proceedings papers and contain considerably more review material, including extensive bibliographies in many cases. Arranged into topical sections, the chapters represent major thrusts in the recent literature. The authors of the first chapter in each section have been encouraged to take a broad perspective and review the current state of literature. Subsequent chapters in each section tend to be somewhat more narrowly focused, and often emphasize the authors' own work. Thus, each section provides overview, background, and current research on a particular topic. This book is significant in that it reviews the important work during the past 10 to 15 years, and provides greater breadth and depth than most of the previous works.
The genesis of this book goes back to the conference held at the University of Bologna, June 1999, on collaborative work between the University of California at Berkeley and the University of Bologna. The book, in its present form, is a compilation of some of the recent work using geometric partial differential equations and the level set methodology in medical and biomedical image analysis.The book not only gives a good overview on some of the traditional applications in medical imagery such as, CT, MR, Ultrasound, but also shows some new and exciting applications in the area of Life Sciences, such as confocal microscope image understanding.
VipIMAGE 2015 contains invited lectures and full papers presented at VIPIMAGE 2015 - V ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (Tenerife, Canary Islands, Spain, 19-21 October, 2015). International contributions from 19 countries provide a comprehensive coverage of the current state-of-the-art in the fields of: 3D Vision; Computational Bio-Imaging and Visualization; Computational Vision; Computer Aided Diagnosis, Surgery, Therapy and Treatment; Data Interpolation, Registration, Acquisition and Compression; Industrial Inspection; Image Enhancement; Image Processing and Analysis; Image Segmentation; Medical Imaging; Medical Rehabilitation; Physics of Medical Imaging; Shape Reconstruction; Signal Processing; Simulation and Modelling; Software Development for Image Processing and Analysis; Telemedicine Systems and their Applications; Tracking and Analysis of Movement and Deformation; Virtual Reality. Computational Vision and Medical Image Processing. VipIMAGE 2015 will be useful to academics, researchers and professionals in Biomechanics, Biomedical Engineering, Computational Vision (image processing and analysis), Computer Sciences, Computational Mechanics, Signal Processing, Medicine and Rehabilitation.
The use of mobile collaborative AR has expended rapidly in recent years, due to the major advances in hardware and networking. The application areas are diverse and multidisciplinary. Recent Trends of Mobile Collaborative Augmented Reality Systems provides a historical overview of previous mobile collaborative AR systems, presents case studies of latest developments in current mobile collaborative AR systems, and latest technologies and system architectures used in this field. Recent Trends of Mobile Collaborative Augmented Reality Systems is designed for a professional audience composed of practitioners and researchers working in the field of augmented reality and human-computer interaction. Advanced-level students in computer science and electrical engineering focused on this topic will also find this book useful as a secondary text or reference.
Offering the first comprehensive analysis of touchless fingerprint-recognition technologies, Touchless Fingerprint Biometrics gives an overview of the state of the art and describes relevant industrial applications. It also presents new techniques to efficiently and effectively implement advanced solutions based on touchless fingerprinting. The most accurate current biometric technologies in touch-based fingerprint-recognition systems require a relatively high level of user cooperation to acquire samples of the concerned biometric trait. With the potential for reduced constraints, reduced hardware costs, quicker acquisition time, wider usability, and increased user acceptability, this book argues for the potential superiority of touchless biometrics over touch-based methods. The book considers current problems in developing high-accuracy touchless recognition technology. It discusses factors such as shadows, reflections, complex backgrounds, distortions due to perspective effects, uncontrolled finger placement, inconstant resolution of the ridge pattern, and reconstruction and processing of three-dimensional models. The last section suggests what future work can be done to increase accuracy in touchless systems, such as intensive studies on extraction and matching methods and three-dimensional analytical capabilities within systems. In a world where usability and mobility have increasing relevance, Touchless Fingerprint Biometrics demonstrates that touchless technologies are also part of the future. A presentation of the state of the art, it introduces you to the field and its immediate future directions.
The fastest, easiest, most comprehensive way to learn. The best-selling series of hands-on software training workbooks, offers what no other book or training program does-an official training series from Adobe, developed with the support of Adobe product experts. Contains 16 lessons that cover the basics and beyond, providing countless tips and techniques to help you become more productive with the program. You can follow the book from start to finish or choose only those lessons that interest you. Build a strong foundation by following hands-on projects for creating logos, illustrations, and posters. Learn how to use the Shaper tool and Live Shapes along with dynamic symbols to streamline graphics creation. Create website assets and export them in multiple formats to support modern responsive web designs. From exacting illustration to more free-form painting, you'll gain vital skills as you progress through the lessons. The online companion files include all the necessary assets for readers to complete the projects featured in each chapter. All buyers of the book get full access to the Web Edition: A Web-based version of the complete ebook enhanced with video and multiple-choice quizzes.
This book focuses on the fundamentals and recent advances in RGB-D imaging as well as covering a range of RGB-D applications. The topics covered include: data acquisition, data quality assessment, filling holes, 3D reconstruction, SLAM, multiple depth camera systems, segmentation, object detection, salience detection, pose estimation, geometric modelling, fall detection, autonomous driving, motor rehabilitation therapy, people counting and cognitive service robots. The availability of cheap RGB-D sensors has led to an explosion over the last five years in the capture and application of colour plus depth data. The addition of depth data to regular RGB images vastly increases the range of applications, and has resulted in a demand for robust and real-time processing of RGB-D data. There remain many technical challenges, and RGB-D image processing is an ongoing research area. This book covers the full state of the art, and consists of a series of chapters by internationally renowned experts in the field. Each chapter is written so as to provide a detailed overview of that topic. RGB-D Image Analysis and Processing will enable both students and professional developers alike to quickly get up to speed with contemporary techniques, and apply RGB-D imaging in their own projects.
The applications of image-based measurement are many and various: image-guided surgery, mobile-robot navigation, component alignment, part inspection and photogrammetry, among others. In all these applications, landmarks are detected and located in images, and measurements made from those locations.Precision Landmark Location for Machine Vision and Photogrammetry addresses the ubiquitous problem of measurement error associated with determining the location of landmarks in images. With a detailed model of the image formation process and landmark location estimation, the Cramer-Rao Lower Bound (CRLB) theory of statistics is applied to determine the least possible measurement uncertainty in a given situation.This monograph provides the reader with: the most complete treatment to date of precision landmark location and the engineering aspects of image capture and processing; detailed theoretical treatment of the CRLB; a software tool for analyzing the potential performance-specific camera/lens/algorithm configurations; two novel algorithms which achieve precision very close to the CRLB; an experimental method for determining the accuracy of landmark location; and, downloadable MATLAB registered] package to assist the reader with applying theoretically-derived results to practical engineering configurations. All of this adds up to a treatment that is at once theoretically sound and eminently practical.Precision Landmark Location for Machine Vision and Photogrammetry will be of great interest to computer scientists and engineers working with and/or studying image processing and measurement. It includes cutting-edge theoretical developments and practical tools so it will appeal to research investigators and system designers.
A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as compressive sensing and sparse signal representations. The book brings a new perspective to a multidisciplinary research field that is becoming increasingly articulate and comprehensive. It fosters signal/image processing methodologies toward the goal of information extraction, either by humans or by machines, from remotely sensed images. The authors explain how relatively simple processing methods tailored to the specific features of the images may be winning in terms of reliable performance over more complex algorithms based on mathematical theories and models unconstrained from the physical behaviors of the instruments. Ultimately, the book covers the births and developments of three generations of RS image fusion. Established textbooks are mainly concerned with the earliest generation of methods. This book focuses on second generation methods you can use now and new trends that may become third generation methods. Only the lessons learned with second generation methods will be capable of fostering the excellence among the myriad of methods that are proposed almost every day by the scientific literature.
"An excellent introductory book" (Review of the First Edition in the International Journal of Electrical Engineering Education) "…it will serve as a reference book in this area for a long time" (Review of Revised Edition in Zentralblatt für Mathematik (Germany)) Firmly established over the last decade as the essential introductory Digital Signal Processing (DSP) text, this second edition reflects the growing importance of random digital signals and random DSP in the undergraduate syllabus by including two new chapters. The authors’ practical, problem-solving approach to DSP continues in this new material, which is packed up by additional worked examples and computer programs. The book now features:
Obtain the Best Estimate of a Strongly Scattering Object from Limited Scattered Field Data Introduction to Imaging from Scattered Fields presents an overview of the challenging problem of determining information about an object from measurements of the field scattered from that object. It covers widely used approaches to recover information about the objects and examines the assumptions made a priori about the object and the consequences of recovering object information from limited numbers of noisy measurements of the scattered fields. The book explores the strengths and weaknesses of using inverse methods for weak scattering. These methods, including Fourier-based signal and image processing techniques, allow more straightforward inverse algorithms to be exploited based on a simple mapping of scattered field data. The authors also discuss their recent approach based on a nonlinear filtering step in the inverse algorithm. They illustrate how to use this algorithm through numerous two-dimensional electromagnetic scattering examples. MATLAB (R) code is provided to help readers quickly apply the approach to a wide variety of inverse scattering problems. In later chapters of the book, the authors focus on important and often forgotten overarching constraints associated with exploiting inverse scattering algorithms. They explain how the number of degrees of freedom associated with any given scattering experiment can be found and how this allows one to specify a minimum number of data that should be measured. They also describe how the prior discrete Fourier transform (PDFT) algorithm helps in estimating the properties of an object from scattered field measurements. The PDFT restores stability and improves estimates of the object even with severely limited data (provided it is sufficient to meet a criterion based on the number of degrees of freedom). Suitable for graduate students and researchers working on medical, geophysical, defense, and industrial inspection inverse problems, this self-contained book provides the necessary details for readers to design improved experiments and process measured data more effectively. It shows how to obtain the best estimate of a strongly scattering object from limited scattered field data.
Image and video signals require large transmission bandwidth and storage, leading to high costs. The data must be compressed without a loss or with a small loss of quality. Thus, efficient image and video compression algorithms play a significant role in the storage and transmission of data. Image and Video Compression: Fundamentals, Techniques, and Applications explains the major techniques for image and video compression and demonstrates their practical implementation using MATLAB (R) programs. Designed for students, researchers, and practicing engineers, the book presents both basic principles and real practical applications. In an accessible way, the book covers basic schemes for image and video compression, including lossless techniques and wavelet- and vector quantization-based image compression and digital video compression. The MATLAB programs enable readers to gain hands-on experience with the techniques. The authors provide quality metrics used to evaluate the performance of the compression algorithms. They also introduce the modern technique of compressed sensing, which retains the most important part of the signal while it is being sensed.
This book provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including topics on systems design tools and techniques. Additionally, the book examines a varied range of applications. Features: contains valuable contributions from an international selection of leading experts in the field; presents a high-level introduction to the aims and motivations underpinning distributed sensing; describes decision-making algorithms in the presence of complex sensor networks; provides a detailed analysis of the design, implementation, and development of a distributed network of homogeneous or heterogeneous sensors; reviews the application of distributed sensing to human behavior understanding and autonomous intelligent vehicles; includes a helpful glossary and a list of acronyms.
Start designing today with this hands-on beginner's guide to AutoCAD Civil 3D 2016 AutoCAD Civil 3D 2016 Essentials gets you quickly up to speed with the features and functions of this industry-leading civil engineering software. This full-color guide features approachable, hands-on exercises and additional task-based tutorials that help you quickly become productive as you master the fundamental aspects of AutoCAD Civil 3D design. Each chapter opens with a quick discussion of concepts and learning goals, and then briskly moves into tutorial mode with screen shots that illustrate each step of the process. The emphasis is on skills rather than tools, and the clear delineation between "why" and "how" makes this guide ideal for quick reference. The companion website provides starting and ending files for each exercise, so you can jump in at any point and compare your work with the pros. Centered around the real-world task of designing a residential subdivision, these exercises get you up to speed with the program's functionality, while also providing the only Autodesk-endorsed preparation for the AutoCAD Civil 3D certification exam. * Master the AutoCAD Civil 3D 2016 interface and basic tasks * Model terrain using imported field survey data * Analyze boundaries, pipe networks, surfaces, and terrain * Estimate quantities and create construction documentation If you're ready to acquire this must-have skillset, AutoCAD Civil 3D 2016 Essentials will get you up to speed quickly and easily.
Biomedical / Electrical Engineering Nonlinear Biomedical Signal
Processing Volume II: Dynamic Analysis and Modeling A volume in the
IEEE Press Series on Biomedical Engineering Metin Akay, Series
Editor Featuring current contributions by experts in signal
processing and biomedical engineering, this book introduces the
concepts, recent advances, and implementations of nonlinear dynamic
analysis methods. Together with Volume I in this series, this book
provides comprehensive coverage of nonlinear signal and image
processing techniques. Nonlinear Biomedical Signal Processing:
Volume II combines analytical and biological expertise in the
original mathematical simulation and modeling of physiological
systems. Detailed discussions of the analysis of steady-state and
dynamic systems, discrete-time system theory, and discrete modeling
of continuous-time systems are provided. Biomedical examples
include the analysis of the respiratory control system, the
dynamics of cardiac muscle and the cardiorespiratory function, and
neural firing patterns in auditory and vision systems. Examples
include relevant MATLAB(r) and Pascal programs. Topics covered
include: |
![]() ![]() You may like...
Nonlinear Dynamical Systems in…
Vasile Marinca, Nicolae Herisanu
Hardcover
R4,639
Discovery Miles 46 390
Chaos - A Program Collection for the PC
Hans Jurgen Korsch, Hans-Joerg Jodl, …
Hardcover
R1,649
Discovery Miles 16 490
Finite Difference Computing with PDEs…
Hans Petter Langtangen, Svein Linge
Hardcover
R1,749
Discovery Miles 17 490
Stochastic Processes and Related Topics…
Ioannis Karatzas, B.S. Rajput, …
Hardcover
R2,822
Discovery Miles 28 220
Advanced Machine Learning Algorithms for…
Mohammad Irfan, Mohamed Elhoseny, …
Hardcover
R7,634
Discovery Miles 76 340
|