![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Medicine > Clinical & internal medicine > Diseases & disorders > Immunology > General
This book presents a detailed overview of the development of new viral vector-based vaccines before discussing two major applications: preventive vaccines for infectious diseases and therapeutic cancer vaccines. Viral vector-based vaccines hold a great potential for development into successful pharmaceutical products and several examples at the advanced pre-clinical or clinical stage are presented. Nevertheless, the most efforts were focused on novel and very innovative technologies for new generation of vector-based vaccines. Furthermore, specific topics such as delivery and adjuvant and protection strategies for cell-mediated-based vaccines are presented. Given its scope, the book is a "must read" for all those involved in vaccine development, both in academia and industrial vaccine development.
Our body is not sterile and harbors enumerable microflora that are now being understood to play a complex role in immune regulation and shaping of the immune system in a continuous and dynamic way. In 8 chapters, Microbial Crosstalk with Immune System: New Insights in Therapeutics provides an overall introduction with special focus on how the immune system which is specifically geared to get rid of non-self-antigens, allows numerous microbes to colonize the human body. In the presence of microbes there are several observations that suggest that there are multiple roles that are played by these microbes in tumor progression and shaping of our immune system which is explained at length in subsequent chapters. Microbial Crosstalk with Immune System: New Insights in Therapeutics discusses the emerging mechanisms of immune-therapeutics as well as its limitations while emphasizing the potential role of microbes in shaping immune-therapeutic and evolving novel strategies to deal with any limitations.
In 2020, an invisible germ-a virus-wholly upended our lives. We're most familiar with the viruses that give us colds or Covid-19. But viruses also cause a vast range of other diseases, including one disorder that makes people sprout branch-like growths as if they were trees. Viruses have been a part of our lives for so long that we are actually part virus: the human genome contains more DNA from viruses than our own genes. Meanwhile, scientists are discovering viruses everywhere they look: in the soil, in the ocean, even in deep caves miles underground. Fully revised and updated, with new illustrations and a new chapter about coronaviruses and the spread of Covid-19, this third edition of Carl Zimmer's A Planet of Viruses pulls back the veil on this hidden world. It presents the latest research on how viruses hold sway over our lives and our biosphere, how viruses helped give rise to the first life-forms, how viruses are producing new diseases, how we can harness viruses for our own ends, and how viruses will continue to control our fate as long as life endures
Immunotherapy began in 1774 when the Dorset farmer Benjamin Jesty inoculated his wife and two sons with the pus from the teat of a cow suffering from cow pox, using his wife's knitting needle as a vaccinating implement. It has made slow progress. Meanwhile the science of Immunology has burgeoned so much that if all immunologists read every page of the Journal of Immunology, let alone the other Immunology journals, then they would have no time left to write for it. I am pleased that some of them have found the time to write for this volume. In spite of the rapid expansion in immuno logical knowledge and the undreamt of complexity of the immune system that has been unravelled, immunologists have remained until recently erudite but therapeutically effete. Indeed anyone purporting to treat disease by immuno logical methods has been in danger of being labelled a quack or a crackpot. Happily things are changing. The nine chapters of this volume detail nine quite different approaches to manipulating the immune system for therapeutic benefit. All are experimental and they have been attended with greater or lesser degrees of success. In some cases their main effect has been to elucidate the complexity of the problem. On the other hand, there are people alive and well today as a result of these approaches who would otherwise have perished. Immunotherapy is here to stay and it can only get better."
Blood Cell Biochemistry was initially conceived as part of the Plenum series Subcellular Biochemistry, from which it has developed into a separate series. The present volume is devoted primarily to contributions on megakaryocytes and platelets and, to a lesser extent, to macrophages and eosinophils. The book does not attempt a rigorous or total coverage of the particular topics; it represents the areas of current scientific activity and interest that were selected by the editor at the commencement of this project. In general, the approach has been similar to that adopted for Volume 1 of the series (Erythroid Cells); the same approach will be followed subsequently in Volume 3 (Lymphocytes and Granulocytes). This book opens with a developmentally oriented chapter by Janine Breton-Gorius on megakaryocyte maturation and platelet release in normal conditions, which serves to set the scene ultrastructurally for much of the data that follow. The biosynthesis and process ing of platelet glycoproteins in megakaryocytes is dealt with by Alain Duperray and his colleagues, and thereby provides an in-depth biochemical survey of the megakaryocyte. The applications and strengths of crossed immunoelectrophoresis for the study of platelet membrane proteins is then covered by Simon Karpatkin, and a detailed account of the heredity disorders of platelet function is provided by Francine Rendu and Evelyne Dupuy."
In recent years, major developments have increased understanding of various genetic and epigenetic regulatory processes that are critical for the generation of B cell repertoires. These include the role of chromatin regulation and nuclear organization in understating the IgH gene regulation. These proceedings highlight recent developments in lymphocyte development, Ig gene rearrangements and somatic hypermutation, chromatin structure modification, B lymphocyte signaling and fate, receptor editing, and autoimmunity.
Derek T. O'Hagan and a team of expert vaccinologists and pharmacologists thoroughly describe the preparation, characterization, and evaluation of a wide range of alternative vaccine adjuvants for use in preclinical studies. Each chapter carefully reviews a single adjuvant, and suggests why a specific adjuvant might be preferred for a given antigen, depending on what type of immune response is desired. Alternate adjuvant choices are also presented so that researchers can choose those most efficacious for their specific purpose. Comprehensive and highly practical, Vaccine Adjuvants: Preparation Methods and Research Protocols provides an effective guide to making and using vaccine adjuvants. By closely following directions from the book, today's researchers will be able optimally to induce specific immune responses against different types of antigens and to selectively manipulate the immune response in a favorable way.
Victor P. Bulgakov, Yuri N. Shkryl, Galina N. Veremeichik, Tatiana Y. Gorpenchenko and Yuliya V. Vereshchagina: Recent Advances in the Understanding of Agrobacterium rhizogenes-Derived Genes and Their Effects on Stress Resistance and Plant Metabolism. Le Zhao, Guy W. Sander and Jacqueline V. Shanks: Perspectives of the Metabolic Engineering of Terpenoid Indole Alkaloids in Catharanthus roseus Hairy Roots. Jian Wen Wang and Jian Yong Wu: Effective Elicitors and Process Strategies for Enhancement of Secondary Metabolite Production in Hairy Root Cultures. Amanda R. Stiles and Chun-Zhao Liu: Hairy Root Culture: Bioreactor Design and Process Intensification. Marina Skarjinskaia, Karen Ruby, Adriana Araujo, Karina Taylor, Vengadesan Gopalasamy-Raju, Konstantin Musiychuk, Jessica A. Chichester, Gene A. Palmer, Patricia de la Rosa, Vadim Mett, Natalia Ugulava, Stephen J. Streatfield and Vidadi Yusibov: Hairy Roots as a Vaccine Production and Delivery System. Zahwa Al-Shalabi and Pauline M. Doran: Metal Uptake and Nanoparticle Synthesis in Hairy Root Cultures.
The Fifth Ir Gene Workshop was held at the Chase-Park Plaza Hotel, St. Louis, MO, August 28-31, 1982; 240 scientists participated in the Workshop. The man uscripts compiled in this book describe the state of the art concerning Ir genes. Although the notion of Ir Genes: Past, Present, and Future has not been ad dressed specifically by each author, the reader is certain to get this flavor from the contributions. In this Preface, we have tried to summarize some of the salient ob servations and discussions from the Workshop. The mUltiple genes of the I region have been defined traditionally by serolog ical analysis of intra-H-2 recombinant mice and the pattern of immune responses to certain antigens developed by these recombinant mice. The application of sev eral new techniques, such as gene cloning and DNA sequencing, production of T and B cell hybridomas, and development of cloned T cell lines has changed this tradition and introduced a new phase into the analysis of the I region, Ia antigens, and Ir genes."
In response to the emergence of pathogenic bacteria that cannot be treated with current antibiotics, many researchers are revisiting the use of bacteriophages, or phages, to fight multidrug-resistant bacteria. Bacteriophage as Antibiotics: Molecular Biology and Applications provides unparalleled, comprehensive information on bacteriophages and their applications, such as phage therapy. It offers techniques, media, and methodology involved in isolating and working with therapeutic phages. Photographs, line drawings, and electron micrographs of phages are also included. With its broad approach, this book is a useful reference for microbiologists, hematologists, and infectious disease researchers.
A significant improvement in the safety of modern vaccines has been the development of subunit vaccines, as these are composed of very well-defined and highly pure components, often recombinant proteins. However, since protein-based antigens in general are weakly immunogenic by themselves, co-administration of adjuvants is required to induce potent and persistent specific immune responses. In recent years, there has been substantial progress in the discovery of new efficient adjuvants for subunit vaccines that are often classified into delivery systems and immunopotentiating compounds that constitute pathogen-associated molecular patterns, such as the toll-like receptor ligands. The combination of delivery systems and immunopotentiators has appeared to represent extraordinarily good adjuvants due to concomitant enhanced antigen delivery and potent stimulation of innate immunity. Many of these adjuvants are of a particulate nature and mimic the structure and/or composition of microbes in a reductionist fashion. Examples are liposomes, polymeric nanoparticles, emulsions and virus-like particles. However, there are a substantial number of pharmaceutical challenges associated with the subunit vaccine development process due to the complex nature of the antigen-adjuvant combinations. These challenges will be presented and discussed in this book. The objective of the book is to compile the concepts essential for the understanding of the pharmaceutical science and technology associated with the delivery of subunit vaccines. The books goal is to provide a comprehensive overview of the scientific and regulatory challenges facing scientists who research and develop subunit vaccines. The scope of the book is wide. It is written in a manner that will enlighten newcomers to the field (e.g., PhD students or experienced scientist switching fields) yet provide an in-depth knowledge that would benefit a skilled worker in the field. "
Continued refinement ofwide-spread access to transgenic technology has allowed for new animal models have been developed that exhibit features of autoimmune disease have been developed that exhibit features of autoimmune disease. The second edition of "Autoimmunity: Methods and Protocols" researchers in the field detail many of the most up-to-date methods which are now commonly used to study autoimmunity. The first half the book focuses on methods and protocols used to assess immunological and biochemical pathways of diseases pathogenesis in human subjects. While the second half investigates treatment of inflammatory arthritis, experimental allergic encephalomyelitis (EAE), IDDM, scleroderma, and uveitis in animal models and assessment of genetic, immunological, and biochemical parameters underlying spontaneous or exogenous antigen-induced diseases. Written in the highly successful "Methods in Molecular Biology(tm)" series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Through and intuitive, "Autoimmunity: Methods and Protocols, Second Edition" seeks to aid scientists in the autoimmunity field to extract new meaning of old models and developing new ones."
Currently, individuals interested in seeking an in-depth discussion
of transplantation immunology must seek individual articles
published in several journals, or extrapolate information from
various non-transplant immunology textbooks. The purpose of this
text is to provide the reader with a single source of information
for the basic science of immunobiology of organ transplantation. It
is unique that it focuses on immunobiology from the basic research
side, with an emphasis on the cellular and molecular levels.
This book, written by very well known opinion leaders in the field, covers all aspects of familial Mediterranean fever, the most common monogenic autoinflammatory disease. The opening chapters explain the genetic basis of the disease and provide insights into the pathogenesis derived from recent experimental studies. A large part of the book is then devoted to a detailed description of the typical and atypical clinical presentations, the disease course, and potential complications in both pediatric and adult patients. Guidance is provided on the measurement of disease severity and the management of patients in daily practice. The advice regarding treatment is based on the best currently available evidence and attention is also paid to important emerging treatments. The book is part of Springer's series Rare Diseases of the Immune System, which presents recently acquired knowledge on pathogenesis, diagnosis, and therapy with the aim of promoting a more holistic approach to these conditions. Monogenic autoinflammatory diseases are hereditary disorders that are caused by single-gene defects in innate immune regulatory pathways and are characterized by a clinical and biological inflammatory syndrome in which there is limited, if any, evidence of autoimmunity. Familial Mediterranean fever itself is due to a mutation in the MEFV gene, which codes for the protein pyrin; it is characterized by periodic fever and episodes of painful inflammation in the abdomen, chest, and joints. Familial Mediterranean Fever will be an invaluable source of up-to-date information for all practitioners involved in the care of patients with the disease.
In Eosinophil: Methods and Protocols, experts in the field of eosinophil biology comprehensively provide detailed methodological insight into the study of this fascinating cell. This book is aimed at a diverse range of basic and clinical scientists who wish to work with eosinophils or who require an update of their knowledge or to gain the information required to study a function of the eosinophil different to their current area of enquiry. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Eosinophil: Methods and Protocols seeks to aid scientist in the discovery of new hypotheses and for further examination of this intriguing cell.
As individuals age, their ability to respond to andclear pathogens and to control unwanted immune reactions declines, leading to a greater incidence of certain infectious diseases, autoimmunity and general immune dysfunctions. Most remarkably, the efficacy of vaccines is frequently decreased in elderly persons. Therefore, age-associated dysfunctions of the humoral and cellular immune responses have a strong clinical impact. Improving our understanding of the aged immune system is crucial in developing effective prevention and treatment programs that will facilitate healthy aging and improve the quality of life of the elderly population. The aim of this volume is to summarize current knowledge on the cellular and molecular aspects of the aging immune system, with an emphasis on infectious diseases and new therapeutic approaches. "
Vaccinology and Methods in Vaccine Research is a combination of cutting-edge methodologies, experimental approaches and literature reviews. The book covers all aspects of vaccine development, including basic immunology (focusing on the stimulation of adaptive immunity, which is required for vaccine efficacy), approaches to vaccine design and target validation, vaccine biomanufacturer and clinical development. Existing vaccinology resources are theoretical reference books, whereas this book provides a practical handbook for use in the research lab and classroom by those working in vaccinology and training others in the field. It is authored and edited by scientists actively engaged in vaccine research and development for day-to-day teaching/methodological advice.
Cardiovascular immunology is a newly emerging research area, investigating the crosstalk between the cardiovascular and the immune system. This crosstalk is evident through (1) crucial immunological capacities and functions of cardiovascular cell types, including cardiomyocytes, fibroblasts, endothelial cells, pericytes and cardiac resident macrophages, (2) the impact of aberrant immune function on the development of cardiovascular disease such as atherosclerosis, direct and indirect immune-mediated heart disease and vasculitis, and (3) the crucial role of the immune system in cardiac repair and regeneration. The Immunology of Cardiovascular Homeostasis and Pathology covers all these aspects of cardiovascular immunology, starting with homeostatic immunological functions of traditional cardiovascular cell types, and moving then to the role of the immune system in cardiovascular pathology and to recent research into targeting the immune system to boost cardiac healing and regeneration.
In this issue of Immunology and Allergy Clinics, guest editors PanidaSriaroon,DennisK. Ledford, and RichardF. Lockey bring their considerable expertise to the topic of Allergic and NonAllergic Systemic Reactions including Anaphylaxis. Top experts in the field cover key topics such as Perioperative anaphylaxis, Fatal and near-fatal allergic reactions to food, Anaphylaxis in infants and toddlers, and more. Contains 15 relevant, practice-oriented topics including Anaphylaxis and systemic allergic reactionswithallergen immunotherapy; Spectrum of mast cell disorders and anaphylaxis; Epinephrine use and underuse in severe allergicreactions; Anaphylaxis due to exercise, insect venom, and idiopathic anaphylaxis; and more. Provides in-depth clinical reviews on Allergic and NonAllergic Systemic Reactions including Anaphylaxis, offering actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize and distill the latest research and practice guidelines to create clinically significant, topic-based reviews.
Antigen processing is a biological process that prepares antigens for the presentation to special cells in the immune system called T lymphocytes. In Antigen Processing: Methods and Protocols, expert researchers in the field provide a comprehensive set of protocols for studying presentation of antigens produced in the standard processing pathways for MHC class I and class II molecules. The chapters follow chronology of intracellular processing events, ending with recognition of peptide-MHC complexes at the cell surface by T lymphocytes. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Antigen Processing: Methods and Protocols is designed for beginners and experts interested in studying antigen processing.
This volume focuses on apoptotic and non-apoptotic programmed cell death, including necroptosis, pyroptosis, and ferroptosis, and presents recent findings in the field. It discusses the crucial role that apoptotic and non-apoptotic cell death play in various pathological conditions, such as skin diseases, inflammatory bowel diseases, and virus infections. Further, it highlights the mechanisms underlying the recognition and clearance of dead cells, and the subsequent biological responses triggered by phagocytosed macrophages and factors released from dying cells. Offering insights into cell death, it is a valuable resource for researchers and clinicians developing novel strategies to treat various diseases that are closely associated with cell death. |
You may like...
Inverse Limits - From Continua to Chaos
W.T. Ingram, William S. Mahavier
Hardcover
R2,666
Discovery Miles 26 660
Theories For Decolonial Social Work…
Adrian Van Breda, Johannah Sekudu
Paperback
(1)R583 Discovery Miles 5 830
Buddhist Foundations of Mindfulness
Edo Shonin, William Van Gordon, …
Hardcover
R3,492
Discovery Miles 34 920
What To Do When You Don't Know What To…
David Jeremiah
Paperback
(2)
|