![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere > Geological surface processes (geomorphology) > General
Landslides represent one of the most destructive natural catastrophes. They can reach extremely long distances and velocities, and are capable of wiping out human communities and settlements. Yet landslides have a creative facet as they contribute to the modification of the landscape. They are the consequence of the gravity pull jointly with the tectonic disturbance of our living planet. Landslides are most often studied within a geotechnical and geomorphological perspective. Engineering calculations are traditionally applied to the stability of terrains. In this book, landslides are viewed as a physical phenomenon. A physical understanding of landslides is a basis for modeling and mitigation and for understanding their flow behavior and dynamics. We still know relatively little about many aspects of landslide physics. It is only recently that the field of landslide dynamics is approaching a more mature stage. This is testified by the release of modelling tools for the simulation of landslides and debris flows. In this book the emphasis is placed on the problems at the frontier of landslide research. Each chapter is self-consistent, with questions and arguments introduced from the beginning.
This book gathers peer-reviewed research articles on recent advances concerning the geology, geophysics, tectonics, geochronology, sedimentology, igneous petrology, paleo-climate and paleo-oceanography of the Andaman and Nicobar Islands of India and the adjoining ocean basins. Accordingly, it contributes significantly to readers' understanding of the origin and evolution of the Andaman subduction zone and its various components. It also provides much-needed information on the evolution of the South Asian monsoon system since the Eocene and its link to Himalayan weathering and erosion.
Provides the first comprehensive review of the current state of the science on tills It is critical that glacial scientists continue to refine their interpretations of ancient archives of subglacial processes, specifically those represented by tills and associated deposits, as they form the most widespread and accessible record of processes at the ice-bed interface. Unfortunately, despite a long history of investigation and a lexicon of process-based nomenclature, glacial sedimentologists have yet to reach a consensus on diagnostic criteria for identifying till genesis in the geological record. What should be called till? Based on the author s extensive field research, as well as the latest literature on the subject, this book attempts to provide a definitive answer to that question. It critically reviews the global till literature and experimental and laboratory-based assessments of subglacial processes, as well as the theoretical constructs that have emerged from process sedimentology over the past century. Drawing on a wide range of knowledge bases, David Evans develops a more precise, contemporary till nomenclature and new investigatory strategies for understanding a critical aspect of glacial process sedimentology. * Provides an in-depth discussion of subglacial sedimentary processes, with an emphasis on the origins of till matrix and terminal grade and the latest observations on till evolution * Describes contemporary laboratory and modelling experiments on till evolution and techniques for measuring strain signatures in glacial deposits * Develops an updated till nomenclature based on an array of knowledge bases and describes new strategies for field description and analysis of glacial diamictons Written by an internationally recognised expert in the field, this book represents an important step forward in the modern understanding of glacial process sedimentology. As such, Till: A Glacial Process Sedimentology is an indispensable resource for advanced undergraduates and researchers in sedimentology, glacier science and related areas.
This Ph.D. thesis attempts to decipher the closure of the Palaeozoic Palaeo-Asian Ocean along the enigmatic Solonker Suture in East Asia adopting a methodology that integrates geochemical and geochronological data from Palaeozoic sedimentary and volcanic rocks in the region. It provides an in-detail but also broad insight into the Palaeozoic to early Mesozoic tectonic evolution of the region, not only pin-pointing the debated location of the Solonker Suture but also the timing of final disappearance of the Palaeo-Asian Ocean during Permian to Early Triassic times. The results have led to propose a tectonic 'soft-collision' model for the amalgamation of the North China Craton and the Mongolian Terranes in northern Asia explaining the general absence of geologic features characteristic for continent-continent collisions such as the occurrence of regional-scale high-grade metamorphic rocks, ophiolite belts and fold-thrust structures. This new model may serve as a blueprint for the tectonic evolution of similar suture zones that are characterized by the absence of typical collision related lithologies and structures. The thesis is particularly useful as a guide for researchers who seek an in-depth understanding of the Palaeozoic to early Mesozoic tectonic evolution of northern China and Central Asia along the Solonker Suture.
Complete coverage of all the basic topics of structural geology.
This books documents the salient characters of the tectonic evolution of the Indian subcontinent. It showcases the well investigated subcontinent of Gondwana. The book is linked to an updated geological and tectonic map of this region on 1:12,000,000 in scale. The Indian subcontinent displays almost uninterrupted and unique the geological history since about Eo-Archean (~3800 Ma) to recent, with the development of many Proterozoic deformed and metamorphosed fold belts around Archean nuclei, and enormously thick undeformed platform deposits. After their stabilization during late Proterozoic, the subcontinent underwent Paleozoic rifting and deposition of coal-bearing thick sequences, followed by enormously-thick outpouring of Deccan volcanics as a consequence of huge mantle plume. The youngest event in its evolution is the Cenozoic Himalayan Orogenic Mountains, spanning the area between Nanga Parbat and Namcha Barwah; a part of which extends both in Pakistan and Myanmar.
This book explains the basic technologies, concepts, approaches, and terms used in relation to reservoir rocks. Accessible to engineers in varying roles, it provides the tools necessary for building reservoir characterization and simulation models that improve resource definition and recovery, even in complex depositional environments. The book is enriched with numerous examples from a wide variety of applications, to help readers understand the topics. It also describes in detail the key relationships between the different rock properties and their variables. As such, it is of interest to researchers, engineers, lab technicians, and postgraduate students in the field of petroleum engineering.
This book offers extensive information on the course of sedimentation in the Proterozoic Vindhyan Basin and the potential record of ancient life stored within the rocks. It covers topics ranging from facies analysis to sequence-building, from carbonates to siliciclastics, and mixed lithology and life records from microbial to potentially eukaryotes, along with the basin evolutionary history. Further, the book includes 75 color photographs and accompanying hand-sketches to help readers grasp key aspects of Vindhyan Geology. Vindhyan rocks are well known for their excellent preservation of microbial record of earth. Offering a student-friendly field guide containing detailed route maps, geological maps and a wealth of visual examples, it is also extremely useful in terms of understanding the microbe-dominated environments on Mars.
Sixty-five million years ago, a comet or asteroid larger than Mount Everest slammed into the Earth, inducing an explosion equivalent to the detonation of a hundred million hydrogen bombs. Vaporized detritus blasted through the atmosphere upon impact, falling back to Earth around the globe. Disastrous environmental consequences ensued: a giant tsunami, continent-scale wildfires, darkness, and cold, followed by sweltering greenhouse heat. When conditions returned to normal, half the plant and animal genera on Earth had perished. This horrific chain of events is now widely accepted as the solution to a great scientific mystery: what caused the extinction of the dinosaurs? Walter Alvarez, one of the Berkeley scientists who discovered evidence of the impact, tells the story behind the development of the initially controversial theory. It is a saga of high adventure in remote locations, of arduous data collection and intellectual struggle, of long periods of frustration ended by sudden breakthroughs, of friendships made and lost, and of the exhilaration of discovery that forever altered our understanding of Earth's geological history.
This book discusses how sediments compact with depth and applications of the compaction trends. Porosity reduction in sediment conveniently indicates the degree of sediments compacted after deposition. Published empirical curves- the compaction curves- are depth-wise porosity variation through which change in pore spaces from sediment surface to deeper depths e.g. up to 6 km can be delineated. Porosity is derived from well logs. Compaction curves, referred to as the Normal Porosity Profile of shales, sandstones and shale bearing sandstones of different models are reviewed along with the different mechanical and chemical compaction processes. These compaction models reveals how porosity reduces depth-wise and the probable reason for anomalous zones. Deviation from these normal compaction trends may indicate abnormal pressure scenarios: either over- or under pressure. We highlight global examples of abnormal pressure scenarios along with the different primary- and secondary mechanisms. Well logs and cores being the direct measurements of porosity, well log is the only cost-effective way to determine porosity of subsurface rocks. Certain well logs can detect overpressure and the preference of one log above the other helps reduce the uncertainty. Apart from delineation of under-compacted zones by comparing the modeled- with the actual compaction, porosity data can also estimate erosion.
This book is designed to provide concepts, methodologies, and
approaches for river basin studies with respect to water resources
and environment. The book is not limited to the Yamuna River basin,
but will help in the study of various other river basins for
integrated water resources management. The book covers the
essential components of integrated water resources management,
including analysis of climatic variables, climate change detection,
analysis of natural resources, geology, geomorphology,
socio-economics, water budgeting, flood estimation, river
pollution, etc. Furthermore, the book addresses recent issues
pertaining to water quality, water quality indices, environmental
flows, water resources management through cropping pattern change,
etc. along with methodologies and application to the Yamuna River
system. However, the main objective of this book is to address
important issues of water resources management of river basins.
These proceedings contain selected papers from the Special Symposium, organised by the Argentine Association of Geomorphology and Quaternary Studies in October 2017. This Symposium was held within the frame of the 20th Argentine Geological Congress in Tucuman, Argentina. The papers describe detailed research on quaternary stratigraphy and geochronology, paleontology (diatoms, mollusks, foraminifera, palynology, phytoliths, paleobotany, vertebrates), dendrochronology, climate change, paleoclimate, pampeano quaternary paleolimnology, paleomagnetism, environmental magnetism, hydrogeochemical processes, geoarchaeology, geomorphology, structural geology and neotectonics, paleosurfaces, volcanism, risks, assets, geomorphosites, and digital mapping. This book follows the precedent book "Advances in Geomorphology and Quaternary Studies in Argentina" on the 6th Argentine Geomorphology and Quaternary Studies Congress, which was edited by Jorge Rabassa and published by Springer in 2017. It precedes a similar volume on the 7th Congreso Argentino de Cuaternario y Geomorfologia, "Geocuar 2018", as organized by Argentine Association of Geomorphology and Quaternary Studies (AACG). This conference was held in Puerto Madryn, Chubut, Argentina, from 18 to 21 September 2018.
This book offers a high-level summary of shallow magmatic systems (dykes, sills and laccoliths) to support geoscience master and PhD students, scientists and practicing professionals. The product of the LASI (Laccoliths and Sills conference) workshop, it comprises thematic sections written by one or more experts on the respective field. It features reviews concerning the physical properties of magma, geotectonic settings, and the structure of subvolcanic systems, as well as case studies on the best-known systems. The book provides readers a broad and comprehensive understanding of the subvolcanic perspective on pluton growth, which is relevant for mineralogical processes as well as the genesis of mineral deposits.
"As Geomorphology has matured as a discipline, so it has developed a range of concepts which are fundamental for understanding it. This book, written by two leading geomorphologists, provides a very welcome first attempt to explain the major concepts in a concise and accessible way." - Andrew Goudie, University of Oxford "I can think of no better guides than Professors Ken Gregory and John Lewin to lead the reader through the conceptual basis of this exciting science... I highly recommend this book to those wishing for an up-to-date introductory overview of this rapidly changing science that is so critical to preserving the continuing habitability of our planet." - Victor R. Baker, University of Arizona "This book provides a very accessible overview of the discipline of geomorphology that is well supported by web-based material. The text is up-to-date, with excellent reference to relevant literature, and presents the discipline in an interesting and novel way. It provides a very readable and informative introduction to the discipline for senior undergraduates, postgraduates and researchers approaching the subject from other areas of science." - Angela Gurnell, Queen Mary University of London "Gregory and Lewin have managed the difficult but important task of distilling a new set of 'basics' that both broadens and complements traditional ideas. This book is remarkable in the way that it acknowledges a wonderful plurality of conceptual frameworks and approaches, and explains them in a clear, engaging way. Time will tell, but this book may well mark a turning point in the way students and scientists alike perceive Earth surface processes and landforms." - Jonathan Phillips, University of Kentucky This student focused book provides a detailed description and analysis of the key concepts, ideas, and hypotheses that inform geomorphology. Kenneth Gregory and John Lewin explain the basics of landform science in 20 concepts, each the subject of a substantive, cross-referenced entry. They use the idea of the 'geomorphic system' to organise entries in four sections, with extensive web resources provided for each: System Contexts: The Systems Approach / Uniformitarianism / Landform / Form, Process and Materials / Equilibrium / Complexity and Non Linear Dynamical Systems System Functioning: Cycles and cascades / Force-Resistance / Geomorphic work / Process Form Models System Adjustments: Timescales / Forcings / Change Trajectories / Inheritance and Sensitivity / Anthropocene Drivers for the Future: Geomorphic Hazards / Geomorphic Engineering / Design and Prediction Aligned with the teaching literature, this innovative text provides a fully-functioning learning environment for study, revision, and even self-directed research for both undergraduate and postgraduate students of geomorphology.
This book describes in detail numerous geological sites throughout the mountains of Oman and the United Arab Emirates (UAE) in Eastern Arabia. The region is well known for its oil and gas reserves in the desert interior, and Permian-Mesozoic shelf carbonates exposed in the mountains of the Musandam peninsula, Jebel al-Akhdar and Saih Hatat, where deep wadi canyons provide impressive three-dimensional views into the crust. The region has numerous globally important geological sites, including the world's largest and best-exposed ophiolite complex, the Semail Ophiolite, which is a vast thrust sheet of Cretaceous ocean crust and upper mantle emplaced onto the Arabian continental margin. Other sites include spectacular fossil localities, subduction zone metamorphic rocks (eclogites, blueschists, amphibolites), fold-thrust belts, giant sheath folds and Precambrian salt domes, as well as the huge sand dunes of the Rub al'Khali, the Empty Quarter, and the separate Wahiba (Sharkiyah) sandsea of Eastern Oman. Written by Mike Searle, who has worked on geological research projects throughout Oman and UAE almost every year since 1978, this book describes the field geology of each site and includes a wealth of maps, field photos and diagrams illustrating key features. It also discusses the history of exploration of Arabia and the search for its hidden geological secrets. The book provides the geological basis for the establishment of a series of World Heritage Sites, National GeoParks and Sites of Special Scientific Interest (SSSI) throughout the region. As such, it is of interest to geologists, tourists, mountaineers, trekkers, rock climbers and naturalists.
This book presents in a concise format a simplified and coherent geological-dynamical history of the Indian subcontinent (including Sri Lanka, Bangladesh, Myanmar, Southern Tibet and Pakistan). Encompassing a broad array of information related to structure and tectonics, stratigraphy and palaeontology, sedimentation and palaeogeography, petrology and geochemistry, geomorphology and geophysics, it explores the geodynamic developments that took place from the beginning around 3.4 billion years ago to the last about 5,000 years before present. Presented in a distilled form, the observations and deductions of practitioners, this book is meant for teachers, researchers and students of geology, geophysics and geomorphology and practitioners of earth sciences. A comprehensive list of references to original works provides guidance for those seeking further details and who wish to examine selected problems in depth. The book is illustrated with a wealth of maps, cross sections and block diagrams - all simplified and redesigned.
This book presents recent findings on the structure and evolution of the Southern Andes. Through a detailed description of a series of orogenic segments reviewed by the different groups that have worked with structural and geophysical tools in each area over the last several years, it illustrates the diversity of mechanisms that have impacted strong orogenic gradients and consequently mountain morphology, from the southern Pampean flat subduction zone to the southern tip of the continent (33-56 S). The book also revises our conventional understanding of the source of the different Mesozoic to Cenozoic sections exhumed in the orogenic wedge, with the objective of discussing basin mechanisms through time. A final chapter discusses probable orogenic controls that have acted together in order to explain structure, the different deformational stages and intra-orogenic extensional collapses that affected the fold and thrust belt over time.
The book introduces essential concept of mineral exploration, mine evaluation and resource assessment of the discovered mineral deposit to students, beginners and professionals. The book is divided into nine chapters which will help the readers to incorporate the concepts of search for mineral deposits and understand the chances of success. The book discusses the fundamental details like composition of earth and mineral resources, formation of rock and mineral deposits, and the attempt to search for ore deposits to advance applications of remote sensing in mineral exploration. It also covers the details on how to conduct system of survey, evaluation, and how to arrive at a decision to open and carryout further exploration in the operating mine. The book shall be of great interest to geologists and mining community.
This book is a practical guide to downhole rock sampling and coring concepts, methods, systems, and procedures for practitioners and researchers. Its chapters are based upon years of extensive studies and research about the coring methods and via direct and continuous communication and consultation obtained from various service and operator companies such as Baker Hughes GE, NOV, OMV, and Sandvik. The contributors discuss the state-of-the-art coring methods and systems (mainly used in the petroleum industry), which include: * conventional coring; * wireline continuous coring; * invasion mitigation coring (low invasion, gel coring, sponge coring); * jam-detection, anti-jamming, full closure; * safe-coring and tripping; * oriented-coring; * pressure/in-situ coring; * logging-while-coring; * motor coring; * mini-coring; * coiled Tubing Coring; and * underbalanced coring. The contributors provide practical and applicable understanding of the procedures of these coring methods and systems, as well as the specific core barrel components, working mechanisms, and schematics of the tools and processes used. Because Coring Methods and Systems analyses and compares the core barrels used in both petroleum and mining industries, it enhances the communication and may allow knowledge transfer between the two industries. As core damage is a serious issue during coring and handling jeopardizing correct calibration of exploration data, Coring Methods and Systems has greatly focused on its identification and its mitigation. Therefore, it can be used as an ideal source for geologists, core analysts, and reservoir engineers, to ensure the retrieval of high-quality cores.
The past half century has seen an evolution in thinking from 'flood control' to 'flood risk management', recognizing that risk results from both hazard and vulnerability. Rather than rely only on engineering structures to reduce flood magnitude or extent, recent policies emphasize avoiding construction in flood-prone areas (or moving people from floodplains), reducing impacts on exposed populations through early warning systems, and insurance to aid in recovery. Implementing this new approach faces many challenges but also offers opportunities for synergies, as described in this book for a range of large floodplain rivers and smaller urban streams across North America and Europe. This book is unique in presenting the voices of those on the front lines of implementing a new paradigm in flood risk management, each river with a unique set of challenges and opportunities derived from its specific geography as well as differences in governance between the American and European contexts.
This thesis explores fluid distribution along the Nankai-Trough megathrust fault around the Kii Peninsula of Japan, where devastating earthquakes are expected to occur in the near future. Exploring fluid distribution along subduction zones is an important issue because the fluid is considered to control the occurrence of earthquakes. One of the effective strategies to estimate fluid content is retrieving receiver functions (RFs) from seismograms, but in the case of ocean-bottom seismometers (OBSs), noisy P-wave reverberations within the seawater column make such an analysis difficult. The author therefore developed a novel technique to suppress the water reverberations, which allows obtaining the fluid distribution data along a wide depth range on the plate interface. This thesis first presents the new technique, called the water layer filter method, and demonstrates its efficiency by using both synthetic and observation data. Then, using the method, a receiver function image of the Philippine Sea Plate is constructed to reveal dehydration processes of the subducting oceanic crust around the Kii Peninsula. Finally, the author performs high-frequency receiver function inversion analysis. The results indicate the presence of a thin fluid-rich sediment layer along the megathrust fault off the Kii Peninsula that acts as a pathway of fluid. Nowadays, the number of offshore observations is increasing worldwide. In this respect, the attempt to better analyze OBS data employing the new method will become more important in future studies.
This proceedings contains a selection of peer-reviewed papers presented at the IAG Scientific Assembly, Postdam, Germany, 1-6 September, 2013. The scientific sessions were focussed on the definition, implementation and scientific applications of reference frames; gravity field determination and applications; the observation and assessment of earth hazards. It presents a collection of the contributions on the applications of earth rotations dynamics, on observation systems and services as well as on imaging and positioning techniques and its applications.
The Azores archipelago consists of nine islands that emerge from the Azores Plateau in the Central Northern Atlantic, situated within the triple junction of the American, Eurasian and African lithosphere plates. Subaerial volcanic activity has been well known since the Pliocene and continues today, with several well-documented eruptions since the settlement of the islands in the fifteenth century. The origin of the Azores Plateau has been a matter of scientific debate and thus this book provides the first comprehensive overview of geological features in the Azores from volcanological, geochemical, petrological, paleontological, structural and hydrological perspectives
This book presents investigations on the Earth's seismic structure using both active-source and natural earthquake records. It discusses the ground-truth data obtained from the TAiwan Integrated GEodynamics Research (TAIGER) active-source experiments that provides excellent and unique insights into the shallow crustal structures beneath Taiwan. It also explores the full-wave sensitivity kernels, which account for the effects of all possible wave interferences involved in shear-wave splitting and therefore loosen the restrictions on source-receiver geometry amenable to shear-wave splitting analysis. Moreover, it describes the 3D Frechet kernels, which enable us to resolve the vertical and lateral variations in seismic anisotropy and obtain 3D images of the Earth's anisotropic structure, as well as the practice in Southern California that enables us to infer the state of the stress and strain in the lithosphere and the dynamics of the asthenospheric mantle flow for a better understanding of the strength and deformation in the upper mantle beneath the San Andreas Fault system.
This unique book provides a concise account of Indian Paleogene and presents a unified view of the Paleogene sequences of India. The Paleogene, comprising the early part of the Cenozoic Era, was the most dynamic period in the Earth's history with profound changes in the biosphere and geosphere. The period spans ~42 million years, beginning from post- K/T mass extinction event at ~65 Ma and ending at ~23 Ma, when the first Antarctic ice sheet appeared in the Southern Hemisphere. The early Paleogene (Paleocene-Eocene) has been considered a globally warm period, superimposed on which were several transient hyperthermal events of extreme warmth. Of these, the Palaeocene Eocene Thermal Maxima (PETM) boundary interval is the most prominent extreme warming episode, lasting 200 Ka. PETM is characterized by 2-60/00 global negative carbon isotope excursion. The event coincided with the Benthic Extinction Event (BEE) in deep sea and Larger Foraminifera Turnover (LFT) in shallow seas. Rapid ~60-80 warming of high latitudinal regions led to major faunal and floral turnovers in continental, shallow-marine and deep-marine areas. The emergence and dispersal of mammals with modern characteristics, including Artiodactyls, Perissodactyls and Primates (APP), and the evolution and expansion of tropical vegetation are some of the significant features of the Paleogene warm world. In the Indian subcontinent, the beginning and end of the Paleogene was marked by various events that shaped the various physiographic features of the Indian subcontinent. The subcontinent lay within the equatorial zone during the earliest part of the Paleogene. Carbonaceous shale, coal and lignite deposits of early Eocene age (~55.5-52 Ma) on the western and north-eastern margins of the Indian subcontinent are rich in fossils and provide information on climate as well as the evolution and paleobiogeography of tropical biota. Indian Paleogene deposits in the India-Asia collision zone also provide information pertaining to the paleogeography and timing of collision. Indian Paleogene rocks are exposed in the Himalayan and Arakan mountains; Assam and the shelf basins of Kutch-Saurashtra, Western Rajasthan; Tiruchirappalli-Pondicherry and Andaman and, though aerially limited, these rocks bear geological evidence of immense importance. |
![]() ![]() You may like...
Taking the Temperature of the Earth…
Glynn Hulley, Darren Ghent
Paperback
R3,047
Discovery Miles 30 470
Seafloor Geomorphology as Benthic…
Peter Harris, Elaine Baker
Paperback
R3,833
Discovery Miles 38 330
Land Surface Remote Sensing in Urban and…
Nicolas Baghdadi, Mehrez Zribi
Hardcover
Urban Geomorphology - Landforms and…
Mary J. Thornbush, Casey D Allen
Paperback
R2,681
Discovery Miles 26 810
Structural Geometry of Mobile Belts of…
Tapas Kumar Biswal, Sumit Kumar Ray, …
Hardcover
R4,139
Discovery Miles 41 390
Current Practice in Fluvial…
Krishna Gopal Ghosh, Sutapa Mukhopadhyay
Hardcover
R3,375
Discovery Miles 33 750
|