![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
The book is focused on constitutive description of mechanical behaviour of engineering materials: both conventional (polycrystalline homogeneous isotropic or anisotropic metallic materials) and non-conventional (heterogeneous multicomponent anisotropic composite materials). Effective material properties at the macro-level depend on both the material microstructure (originally isotropic or anisotropic) as well as dissipative phenomena occurred on fabrication and consecutive loading phase (hardening) resulting in irreversible microstructure changes (acquired anisotropy). The material symmetry is a background and anisotropy is a core around which the book is formed. In this way a revision of classical rules of enhanced constitutive description of materials is required.
This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths. Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials.
This book deals with dynamics of pre-stressed or pre-strained bi-material elastic systems consisting of stack of pre-stressed layers, stack of pre-stressed layers and pre-stressed half space (or half plane), stack of pre-stressed layers as well as absolute rigid foundation, pre-stressed compound solid and hollow cylinders and pre-stressed sandwich hollow cylinders. The problems considered in the book relate to the dynamics of a moving and oscillating moving load, forced vibration caused by linearly located or point located time-harmonic forces acting to the foregoing systems. Moreover, a considerable part of the book relate to the problems regarding the near surface, torsional and axisymmetric longitudinal waves propagation and dispersion in the noted above bi-material elastic systems. The book carries out the investigations within the framework of the piecewise homogeneous body model with the use of the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies.
ways in which the magnetic interaction between neutrons and magnetic moments can yield information on the magnetization densities of thin ?lms and multilayers. I commend the organizers for having organized a group of expert lecturers to present this subject in a detailed but clear fashion, as the importance of the subject deserves. Argonne, IL S. K. Sinha Contents 1 The Interaction of X-Rays (and Neutrons) with Matter . . . . . . . . . . . . . . 1 F. de Bergevin 1. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Generalities and De?nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 From the Scattering by an Object to the Propagation in a Medium . 14 1. 4 X-Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1. 5 X-Rays: Anisotropic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1. A Appendix: the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2 Statistical Aspects of Wave Scattering at Rough Surfaces . . . . . . . . . . . . 59 A. Sentenac and J. Daillant 2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2. 2 Description of Randomly Rough Surfaces . . . . . . . . . . . . . . . . . . . . . 60 2. 3 Description of a Surface Scattering Experiment, Coherence Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2. 4 Statistical Formulation of the Diffraction Problem . . . . . . . . . . . . . . 72 2. 5 Statistical Formulation of the Scattered Intensity Under the Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3 Specular Re?ectivity from Smooth and Rough Surfaces . . . . . . . . . . . . . 85 A. Gibaud and G. Vignaud 3. 1 The Re?ected Intensity from an Ideally Flat Surface . . . . . . . . . . . . 85 3. 2 X-Ray Re?ectivity in Strati?ed Media . . . . . . . . . . . . . . . . . . . . . . . . 98 3. 3 From Dynamical to Kinematical Theory . . . . . . . . . . . . . . . . . . . . . . 107 3. 4 In?uence of the Roughness on the Matrix Coef?cients . . . . . . . . . . 111 3. A Appendix: The Treatment of Roughness in Specular Re?ectivity . . 113 3. B Appendix: Inversion of re?ectivity data . . . . . . . . . . . . . . . . . . . . . . .
This book presents the latest advances in thermal energy storage development at both the materials and systems level. It covers various fields of application, including domestic, industrial and transport, as well as diverse technologies, such as sensible, latent and thermochemical. The contributors introduce readers to the main performance indicators for thermal storage systems, and discuss thermal energy storage (TES) technologies that can be used to improve the efficiency of energy systems and increase the share of renewable energy sources in numerous fields of application. In addition to the latest advances, the authors discuss the development and characterization of advanced materials and systems for sensible, latent and thermochemical TES, as well as the TES market and practical applications. They also report on and assess the feasibility of uniform characterization protocols and main performance indicators, compared to previous attempts to be found in the literature. The book will help to increase awareness of thermal energy storage technologies in both the academic and industrial sectors, while also providing experts new tools to achieve a uniform approach to thermal energy storage characterization methods. It will also be of interest to all students and researchers seeking an introduction to recent innovations in TES technologies.
This book addresses and analyzes the mechanisms responsible for functionality of two technologically relevant materials, giving emphasis on the relationship between structural transitions and electromechanical properties. The author investigates the atomic crystal structure and microstructure by means of thermal analysis, as well as diffraction and microscopy techniques. Electric field-, temperature- and frequency-dependent electromechanical properties are also described. Apart from this correlation between structure and properties, characterization was also performed to bridge between basic research and optimization of application-oriented parameters required for technological implementation. The author proposes guidelines to the reader in order to engineer functional properties in other piezoelectric systems, as well as in other similar functional materials with the perovskite structure.
This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.
The edge and surface inspection is one of the most important and most challenging tasks in quality assessment in industrial production. Typical defects are cracks, inclusions, pores, surface flakings, partial or complete tears of material surface and s.o. These defects can occur through defective source material or through extreme strain during machining process. Detection of defects on a materialc surface can be complicated due to extremely varying degrees of material brightness or due to shadow areas, caused by the folding of the surface. Furthermore, impurities or surface discolourations can lead to artefacts that can be detected as pseudo-defects. The brightness conditions on the edge of material defects are interpreted as a Gauss distribution of a radiation and used for a physical model. Basing on this model, an essentially new set of adaptive edge-based algorithms was developed. Using these methods, different types of defects can be detected, without the measurements being dependent on local or global brightness conditions of the image taken. The new adaptive edge-based algorithms allow a defect detection on different materials, like metal, ceramics, plastics and stone. These methods make it possible to explicitly detect all kinds of different defects independently of their size, form and position and of the surface to be inspected. The adaptive edge-based methods provide a very wide spectrum of applications.
This book is primarily a general text covering the whole sweep of the forest industries. The over-riding emphasis is on a clear, simple interpretation of the underlying science, demonstrating how such principles apply to processing operations. The book starts by considering the broad question what is wood? by looking at the biology, chemistry and physics of wood structure (first 4 chapters). This sets the scene. Next key chapters examine wood quality - explaining how and why wood quality can be so variable and implications for processing. Finally, in a series of chapters, various industrial processes are reviewed and interpreted. The 2nd Edition is a total revision. A few chapters remain relatively unchanged (no change for the sake of change). Many have been totally rewritten. All chapters have been written by specialists, but the presentation targets a generalist audience.
The TRIUMF Isotope Separator and Accelerator (ISAC) facility uses the isotope separation on-line (ISOL) technique to produce rare-isotope beams (RIB). The ISOL system consists of a primary production beam, a target/ion source, a mass separator, and beam transport system. The rare isotopes produced during the interaction of the proton beam with the target nucleus are stopped in the bulk of the target material. They diffuse inside the target material matrix to the surface of the grain and then effuse to the ion source where they are ionized to form an ion beam that can be separated by mass and then guided to the experimental facilities. Previously published in the journal Hyperfine Interactions.
This book covers the basic principles and application of nanoindentation technology to determine residual stresses in films and coatings. It briefly introduces various detection technologies for measuring residual stresses, while mainly focusing on nanoindentation. Subsequently, nanoindentation is used to determine residual stresses in different types of films and coatings, and to describe them in detail. This book is intended for specialists, engineers and graduate students in mechanical design, manufacturing, maintenance and remanufacturing, and as a guide to the practice of production with social and economic benefits.
This volume presents the major outcome of the IUTAM symposium on
Advanced Materials Modeling for Structures . It discusses advances
in high temperature materials research, and also to provides a
discussion the new horizon of this fundamental field of applied
mechanics. The topics cover a large domain of research but place a
particular emphasis on multiscale approaches at several length
scales applied to non linear and heterogeneous materials.
Since the 1997 Kyoto protocol of reduction of greenhouse gas emissions, the development of novel refrigerators has been a priority within the scientific community. Although magnetocaloric materials are promising candidates, they still need a large magnetic field to induce a giant T as well as powerful and costly magnets. However, in electrocaloric materials (ECMs) a temperature change may be achieved by applying or removing an electric field. Since a giant electrocaloric effect on ferroelectric thin films was reported in Science in 2006, researchers have been inspired to explore such effect in different ferroelectric thin films. This book reviews electrocaloric effects observed in bulk materials as well as recent promising advances in thin films, with special emphasis on the ferroelectric, antiferroelectric and relaxor nature of ECMs. It reports a number of considerations about the future of ECMs as a means of achieving an efficient, ecologically sustainable and low cost refrigerator.
Archaeological chemistry is a subject of great importance to the study and methodology of archaeology. This comprehensive text covers the subject with a full range of case studies, materials, and research methods. With twenty years of experience teaching the subject, the authors offer straightforward coverage of archaeological chemistry, a subject that can be intimidating for many archaeologists who do not already have a background in the hard sciences. With clear explanations and informative illustrations, the authors have created a highly approachable text, which will help readers overcome that intimidation. Topics covered included: Materials (rock, pottery, bone, charcoal, soils, metals, and others), Instruments (microscopes, NAA, spectrometers, mass spectrometers, GC/MS, XRF & XRD, Case Studies (Provinience, Sediments, Diet Reconstruction, Past Human Movement, Organic Residues). The detailed coverage and clear language will make this useful as an introduction to the study of archaeological chemistry, as well as a useful resource for years after that introduction.
"Neutron Applications in Materials for Energy "collects results and conclusions of recent neutron-based investigations of materials that are important in the development of sustainable energy. Chapters are authored by leading scientists with hands-on experience in the field, providing overviews, recent highlights, and case-studies to illustrate the applicability of one or more neutron-based techniques of analysis. The theme follows energy production, storage, and use, but each chapter, or section, can also be read independently, with basic theory and instrumentation for neutron scattering being outlined in the introductory chapter. Whilst neutron scattering is extensively used to understand properties of condensed matter, neutron techniques are exceptionally-well suited to studying how the transport and binding of energy and charge-carrying molecules and ions are related to their dynamics and the material s crystal structure. These studies extend to "in situ" and "in operando" in some cases. The species of interest in leading energy-technologies include H2, H+, and Li+ which have particularly favourable neutron-scattering properties that render these techniques of analysis ideal for such studies and consequently, neutron-based analysis is common-place for hydrogen storage, fuel-cell, catalysis, and battery materials. Similar research into the functionality of solar cell, nuclear, and CO2 capture/storage materials rely on other unique aspects of neutron scattering and again show how structure and dynamics provide an understanding of the material stability and the binding and mobility of species of interest within these materials. Scientists and students looking for methods to help them understand the atomic-level mechanisms and behaviour underpinning the performance characteristics of energy materials will find "Neutron Applications in Materials for Energy "a valuable resource, whilst the wider audience of sustainable energy scientists, and newcomers to neutron scattering should find this a useful reference. "
This handbook provides ready access to all of the major concepts, techniques, problems, and solutions in the emerging field of pseudorandom pattern testing. Until now, the literature in this area has been widely scattered, and published work, written by professionals in several disciplines, has treated notation and mathematics in ways that vary from source to source. This book opens with a clear description of the shortcomings of conventional testing as applied to complex digital circuits, revewing by comparison the principles of design for testability of more advanced digital technology. Offers in-depth discussions of test sequence generation and response data compression, including pseudorandom sequence generators; the mathematics of shift-register sequences and their potential for built-in testing. Also details random and memory testing and the problems of assessing the efficiency of such tests, and the limitations and practical concerns of built-in testing.
This book is a comprehensive source of the fundamentals, process parameters, instrumental components and applications of laser-induced breakdown spectroscopy (LIBS). The effect of multiple pulses on material ablation, plasma dynamics and plasma emission is presented. A heuristic plasma modeling allows to simulate complex experimental plasma spectra. These methods and findings form the basis for a variety of applications to perform quantitative multi-element analysis with LIBS. These application potentials of LIBS have really boosted in the last years ranging from bulk analysis of metallic alloys and non-conducting materials, via spatially resolved analysis and depth profiling covering measuring objects in all physical states: gaseous, liquid and solid. Dedicated chapters present LIBS investigations for these tasks with special emphasis on the methodical and instrumental concepts as well as the optimization strategies for a quantitative analysis. Requirements, concepts, design and characteristic features of LIBS instruments are described covering laboratory systems, inspections systems for in-line process control, mobile systems and remote systems. State-of-the-art industrial applications of LIBS systems are presented demonstrating the benefits of inline process control for improved process guiding and quality assurance purposes.
The book deals with atomistic properties of solids which are determined by the crystal structure, interatomic forces and atomic displacements influenced by the effects of temperature, stress and electric fields. The book gives equal importance to experimental details and theory. There are full chapters dedicated to the tensor nature of physical properties, mechanical properties, lattice vibrations, crystal structure determination and ferroelectricity. The other crystalline states like nano-, poly-, liquid- and quasi crystals are discussed. Several new topics like nonlinear optics and the Rietveld method are presented in the book. The book lays emphasis on the role of symmetry in crystal properties. Comprehensiveness is the strength of the book; this allows users at different levels a choice of chapters according to their requirements.
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Proceedings of the 3rd Joint International Conference on Hyperfine Interactions and International Symposium on Nuclear Quadrupole Interactions, HFI/NQI 2010 held at CERN, Switzerland, September 13-17, 2010 Reprinted from Hyperfine Interactions Volume. This volume focuses on the most recent studies on all aspects of hyperfine interaction detected by nuclear radiation and nuclear quadrupole interactions detected by resonance methods in the areas of materials, biological and medical science, as well as on contributions on new developments in instrumentation and methods, ab initio calculations and simulations. This volume comprises research papers, reviews, and short communications recording original investigations related to: Theory on Hyperfine Interactions (HFI) and Nuclear Moments; Magnetism and Magnetic Materials (Bulk and Thin Layers); HFI probes in Semiconductors, Metals and Insulators; Lattice Dynamics and Ion-Solid Interactions; Surfaces, Interfaces, Thin Films, and Nano-structures; Resonance Methods; Nuclear Moments, Nuclear Polarization and Spin Dynamics; Investigations in Biology, Chemistry, and Medicine; New Directions and Developments in Methodology. The papers present the latest scientific work of various invited speakers and contributor researchers from the five continents that have brought their perspectives to the meeting.
This book, "Heat and Mass Transfer in Porous Media," presents a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena in a porous medium domain, as well as related material properties and their measurements. The book contents include both theoretical and experimental developments, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics will encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a short monograph in which the authors summarize the current state of knowledge for benefit of professionals.
This book is the first of 2 special volumes dedicated to the memory of Gerard Maugin. Including 40 papers that reflect his vast field of scientific activity, the contributions discuss non-standard methods (generalized model) to demonstrate the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro-macro aspects, computational endeavors, options for identifying constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.
ZnO has been the central theme of research in the past decade due to its various applications in band gap engineering, and textile and biomedical industries. In nanostructured form, it offers ample opportunities to realize tunable optical and optoelectronic properties and it was also termed as a potential material to realize room temperature ferromagnetism. This book presents 17 high-quality contributory chapters on ZnO related systems written by experts in this field. These chapters will help researchers to understand and explore the varied physical properties to envisage device applications of ZnO in thin film, heterostructure and nanostructure forms.
Research for the development of more efficient photocatalysts has experienced an almost exponential growth since its popularization in early 1970 s. Despite the advantages of the widely used TiO2, the yield of the conversion of sun power into chemical energy that can be achieved with this material is limited" "prompting the research and development of a number of structural, morphological and chemical modifications of TiO2, as well as a number of novel photocatalysts with very different composition." Design of Advanced Photocatalytic Materials for Energy and Environmental Applications" provides a systematic account of the current understanding of the relationships between the physicochemical properties of the catalysts and photoactivity. The already long list of photocatalysts phases and their modifications is increasing day by day. By approaching this field from a material sciences angle, an integrated view allows readers to consider the diversity of photocatalysts globally and in connection with other technologies. "Design of Advanced Photocatalytic Materials for Energy and Environmental Applications" provides a valuable road-map, outlining the common principles lying behind the diversity of materials, but also delimiting the imprecise border between the contrasted results and the most speculative studies. This broad approach makes it ideal for specialist but also for engineers, researchers and students in related fields.
This book is written for scientists involved in the calibration of viscometers. A detailed description for stepping up procedures to establish the viscosity scale and obtaining sets of master viscometers is given in the book. Uncertainty considerations for standard oils of known viscosity are presented. The modern viscometers based on principles oftuning fork, ultrasonic, PZT, plate waves, Love waves, micro-cantilever and vibration of optical fiber are discussed to inspire the reader to further research and to generate improved versions. The primary standard for viscosity is pure water. Measurements of its viscosity with accuracy/uncertainty achieved are described. The principles of rotational and oscillation viscometers are explained to enhance the knowledge in calibration work. Devices used for specific materials and viscosity in non SI units are discussed with respect to the need to correlate viscosity values obtained by various devices. The description of commercial viscometers meets the needs of the user." |
You may like...
Forest Conservation Policy - A Reference…
V. Alaric Sample, Antony S. Cheng
Hardcover
R2,064
Discovery Miles 20 640
Chemical Biology of the Tropics - An…
Jorge M. Vivanco, Tiffany Weir
Hardcover
R3,995
Discovery Miles 39 950
Tropical Forest Genetics
Reiner Finkeldey, Hans Heinrich Hattemer
Hardcover
R5,176
Discovery Miles 51 760
|