![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
This book is written in honor of Prof. Francisco Rodriguez-Reinoso, who has made significant contributions in the area of porous materials such as active carbons and graphenes. It details the preparation of porous materials, including carbonaceous, zeolitic, and siliceous materials, MOFs, aerogels, and xerogels, describing the characterization techniques and the interpretation of the results, and highlighting common errors that can occur during the process. This book subsequently presents the use of modeling based on thermodynamics to describe the materials. Lastly, it illustrates a number of current environmental protection applications in the context of both water and air.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
The book highlights the recent research developments in biocomposite design, mechanical performance and utility. It discusses innovative experimental approaches along with mechanical designs and manufacturing aspects of various fibrous polymer matrix composites and presents examples of the synthesis and development of biocomposites and their applications. It is useful for researchers developing biocomposite materials for biomedical and environmental applications.
Flammability Testing of Materials used in Construction, Transport, and Mining, Second Edition provides an authoritative guide to current best practice in ensuring fire-safe design. The book begins by discussing the fundamentals of flammability, measurement techniques, and the main types of fire tests for various applications. Building on this foundation, a group of chapters then reviews tests for key materials used in the building, transport, and mining sectors. There are chapters on wood products, external cladding, and sandwich panels as well as the flammability of walls and ceilings linings. Tests for upholstered furniture and mattresses, cables, and electrical appliances are also reviewed. A final group of chapters discusses fire tests for the transport sector, including those for railway passenger cars, aircraft, road and rail tunnels, ships, and submarines. There is also a chapter on tests for spontaneous ignition of solid materials. With its distinguished international team of contributors, Flammability Testing of Materials used in Construction, Transport, and Mining is an invaluable reference for fire safety, civil, chemical, mechanical, mining and transport engineers. In this revised edition, the latest information is provided on fire testing of products, systems, components, and materials used across these essential sectors, with all regulations and standards brought up to date.
This book presents physical units and widely used physical formulas, which are given together with conversion factors in various units. It includes frequently used atomic spectra and data for atoms, ions and molecules, as well as potential curves for diatomic molecules, and provides numerical parameters for transport phenomena in gases and plasmas. Further, the rate constants of a number of processes in atmospheric ionized air have been added to this second edition of the book. The numerical data has been selected from the information on atoms, atomic systems, atomic processes and models for atomic physics in this area, and the numerical parameters of atoms, ions and atom systems are included in periodical tables of elements.
The thesis focuses on the syntheses, structural characterizations and chemical bonding analyses for several ternary R-M-Ge (R = rare earth metal; M = another metal) intermetallics. The challenges in understanding the main interactions governing the chemistry of these compounds, which lead to our inability to predict their formation, structure and properties, are what provided the motivation for this study. In particular, the R2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag), R4MGe10-x (M = Li, Mg), R2Pd3Ge5, Lu5Pd4Ge8, Lu3Pd4Ge4 and Yb2PdGe3 phases were synthesized and structurally characterized. Much effort was put into the stabilization of metastable phases, employing the innovative metal flux method, and into the accurate structure solution of twinned crystals. Cutting-edge position-space chemical bonding techniques were combined with new methodologies conceived to correctly describe the Ge-M, Ge-La and also La-M polar-covalent interactions for the La2MGe6 (M = Li, Mg, Al, Cu, Zn, Pd, Ag) series. The present results constitute a step forward in our comprehension of ternary germanide chemistry as well as providing a good playground for further investigations.
The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.
This monograph introduces breakthrough control algorithms for partial differential equation models with moving boundaries, the study of which is known as the Stefan problem. The algorithms can be used to improve the performance of various processes with phase changes, such as additive manufacturing. Using the authors' innovative design solutions, readers will also be equipped to apply estimation algorithms for real-world phase change dynamics, from polar ice to lithium-ion batteries. A historical treatment of the Stefan problem opens the book, situating readers in the larger context of the area. Following this, the chapters are organized into two parts. The first presents the design method and analysis of the boundary control and estimation algorithms. Part two then explores a number of applications, such as 3D printing via screw extrusion and laser sintering, and also discusses the experimental verifications conducted. A number of open problems and provided as well, offering readers multiple paths to explore in future research. Materials Phase Change PDE Control & Estimation is ideal for researchers and graduate students working on control and dynamical systems, and particularly those studying partial differential equations and moving boundaries. It will also appeal to industrial engineers and graduate students in engineering who are interested in this area.
This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure-Property Relationship being the second volume by the same author.
This companion volume to "Fundamental Polymer Science" (Gedde and Hedenqvist, 2019) offers detailed insights from leading practitioners into experimental methods, simulation and modelling, mechanical and transport properties, processing, and sustainability issues. Separate chapters are devoted to thermal analysis, microscopy, spectroscopy, scattering methods, and chromatography. Special problems and pitfalls related to the study of polymers are addressed. Careful editing for consistency and cross-referencing among the chapters, high-quality graphics, worked-out examples, and numerous references to the specialist literature make "Applied Polymer Science" an essential reference for advanced students and practicing chemists, physicists, and engineers who want to solve problems with the use of polymeric materials.
This book, the first of a two-volume set, focuses on the basic physical principles of blackbody radiometry and describes artificial sources of blackbody radiation, widely used as sources of optical radiation, whose energy characteristics can be calculated on the base of fundamental physical laws. Following a review of radiometric quantities, radiation laws, and radiative heat transfer, it introduces the basic principles of blackbody radiators design, details of their practical implementation, and methods of measuring their defining characteristics, as well as metrological aspects of blackbody-based measurements. Chapters are dedicated to the effective emissivity concept, methods of increasing effective emissivities, their measurement and modeling using the Monte Carlo method, techniques of blackbody radiators heating, cooling, isothermalization, and measuring their temperature. An extensive and comprehensive reference source, this book is of considerable value to students, researchers, and engineers involved in any aspect of blackbody radiometry.
This book presents new approaches that offer a better characterization of the interrelationship between crystalline and amorphous phases. In recent years, the use of dielectric spectroscopy has significantly improved our understanding of crystallization. The combination of modern scattering methods, using either synchrotron light or neutrons and infrared spectroscopy with dielectrics, is now helping to reveal modifications of both crystalline and amorphous phases. In turn, this yields insights into the underlying physics of the crystallization process in various materials, e.g. polymers, liquid crystals and diverse liquids. The book offers an excellent introduction to a valuable application of dielectric spectroscopy, and a helpful guide for every scientist who wants to study crystallization processes by means of dielectric spectroscopy.
This collection focuses on all aspects of science and technology related to friction stir welding and processing.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang'e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
This book offers selected contributions to fundamental research and application in designing and engineering materials. It focuses on mechanical engineering applications such as automobile, railway, marine, aerospace, biomedical, pressure vessel technology, and turbine technology. This includes a wide range of material classes, like lightweight metallic materials, polymers, composites, and ceramics. Advanced applications include manufacturing using the new or newer materials, testing methods, and multi-scale experimental and computational aspects.
Neutrons are extremely versatile probes for investigating structure and dynamics in condensed matter. Due to their large penetration depth, they are ideal for in-situ measurements of samples situated in sophisticated and advanced environments. The advent of new high-intensity neutron sources and instruments, as well as the development of new real-time techniques, allows the tracking of transformation processes in condensed matter on a microscopic scale. The present volume provides a review of the state of the art of this new and exciting field of kinetics with neutrons.
This book covers state-of-the-art technologies, principles, methods and industrial applications of electronic waste (e-waste) and waste PCB (WPCB) recycling. It focuses on cutting-edge mechanical separation processes and pyro- and hydro-metallurgical treatment methods. De-soldering, selective dismantling, and dry separation methods (including the use of gravity, magnetic and electrostatic techniques) are discussed in detail, noting the patents related to each. The volume discusses the available industrial equipment and plant flowsheets used for WPCB recycling in detail, while addressing potential future directions of the field. This practical, comprehensive, and multidisciplinary reference will appeal to professionals throughout global industrial, academic and government institutions interested in addressing the growing problem of e-waste. Covers principles, methods and industrial applications of e-waste and PCB recycling; Details state-of-the-art mechanical separation processes and pyro- and hydro-metallurgical treatment methods; Describes the available industrial equipment used and plant flowsheets for PCB recycling and addresses potential future developments of this important field.
This volume contains select papers presented during the Functional Textiles and Clothing Conference 2020 held at Indian Institute of Technology Delhi. The volume covers recent developments, challenges and opportunities in the field of functional and protective clothing; functional printing and finishing; sustainable production and supply chain; and testing and characterisation. This volume will be of interest to researchers, professional engineers, entrepreneurs, and market stakeholders interested in functional textiles and clothing.
This book focuses on the latest scientific and technological advancements in the field of railway turnout engineering. It offers a holistic approach to the scientific investigation of the factors and mechanisms determining performance degradation of railway switches and crossings (S&Cs), and the consequent development of condition monitoring systems that will enable infrastructure managers to transition towards the implementation of predictive maintenance. The book is divided into three distinct parts. Part I discusses the modelling of railway infrastructure, including switch and crossing systems, while Part II focuses on metallurgical characterization. This includes the microstructure of in-field loaded railway steel and an analysis of rail screw failures. In turn, the third and final part discusses condition monitoring and asset management. Given its scope, the book is of interest to both academics and industrial practitioners, helping them learn about the various challenges characterizing this engineering domain and the latest solutions to properly address them.
This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domain. The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge.
This book provides insight into the underlying basic theories and concepts in X-ray, light, and neutron scattering. The three scattering principles are systematically presented, together with a unified description based on elastic scattering of electromagnetic waves and the Schroedinger wave from matter. These explanations are presented with an introduction of their common Born approximation using a consistent set of symbols and terminology and with step-by-step derivations of equations. This book emphasizes the combined applications of these three scattering methods, wherever and whenever possible, as a very powerful methodology for characterization of internal structures of soft matters in the length scale ranging from subnanometers to a few 10 micron meters. These applications include explorations for evolution of hierarchically self-organized internal structures of a variety of soft matters, including cells, under diverse environmental conditions. This book will not only be an excellent resource for graduate students and academic researchers who analyze structures of soft matters and polymers, but it will also be useful for researchers in industries.
Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.
This book highlights a novel and holistic approach to multiscaled PVA bionanocomposite films used for electrical sensing, medical and packaging applications. With a combination of material characterization and modeling to understand the effect of nanoparticle size and shape, as well as 3D interphase properties and features such as interphase modulus and nanoscale dimensions, this book substantiates how excellent mechanical and thermal properties of these materials are achieved. Also it addresses the importance of using economical and ecofriendly bionanocomposites as potential green materials to support the goal of environmental sustainability with multifunctional properties.
This book presents the basics and methods of nanoscale analytical techniques for tribology field. It gives guidance to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. It provides an overview of the of state-of-the-art for researchers and practitioners in the field of tribology. It shows different examples to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. Friction and Wear phenomena are governed by complexe processes at the interface of sliding surfaces. For a detailed understanding of these phenomena many surface sensitive techniques have become available in recent years. The applied methods are atom probe tomography, in situ TEM, SERS, NEXAFS, in situ XPS, nanoindentation and in situ Raman spectroscopy. A survey of new related numerical calculations completes this book. This concerns ab-initio coupling, numerical calculations for mechanical aspects and density functional theory (DFT) to study chemical reactivity.
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. "In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work." G. Petzow in International Journal of Materials Research. "The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick 'cook book' type text, but as a serious, critical treatise for some significant time to come." G.S. Upadhyaya in Science of Sintering. "The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, 'Intermezzos', 'Epilogues' and asides within the text from the author's experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science." M. Davies in Materials World. |
You may like...
Handbook of Materials Failure Analysis…
Abdel Salam Hamdy Makhlouf, Mahmood Aliofkhazraei
Hardcover
R3,540
Discovery Miles 35 400
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,800
Discovery Miles 48 000
Stress Corrosion Cracking - Theory and…
V. S. Raja, T. Shoji
Paperback
ZIF-8 Based Materials for Water…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,798
Discovery Miles 47 980
A Comprehensive Database of Tests on…
Zhongxuan Yang, Richard Jardine, …
Paperback
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Environmental Footprints of Recycled…
Subramanian Senthilkannan Muthu
Hardcover
R1,408
Discovery Miles 14 080
Friction Stir Welding and Processing VII
Rajiv Mishra, Murray Mahoney, …
Hardcover
R3,462
Discovery Miles 34 620
|