Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
This thesis presents the first direct observations of the 3D-shape, size and electrical properties of nanoscale filaments, made possible by a new Scanning Probe Microscopy-based tomography technique referred to as scalpel SPM. Using this innovative technology and nm-scale observations, the author achieves essential insights into the filament formation mechanisms, improves the understanding required for device optimization, and experimentally observes phenomena that had previously been only theoretically proposed.
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B, B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative "routine CW EPR" is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.
The subject of mechanical behavior has been in the front line of basic studies in engineering curricula for many years. This textbook was written for engineering students with the aim of presenting, in a relatively simple manner, the basic concepts of mechanical behavior in solid materials. A second aim of the book is to guide students in their laboratory experiments by helping them to understand their observations in parallel with the lectures of their various courses; therefore the first chapter of the book is devoted to mechanical testing. Another aim of the book is to provide practicing engineers with basic help to bridge the gap of time that has passed from their graduation up to their actual involvement in engineering work. The book also serves as the basis for more advanced studies and seminars when pursuing courses on a graduate level. The content of this textbook and the topics discussed correspond to courses that are usually taught in universities and colleges all over the world, but with a different and more modern approach. It is however unique by the inclusion of an extensive chapter on mechanical behavior in the micron and submicron/nanometer range. Mechanical deformation phenomena are explained and often related to the presence of dislocations in structures. Many practical illustrations are provided representing various observations encountered in actual structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included to provide a broad basis for further studying the subject.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This collection represents a cross-section of the papers presented at the 6th International Conference on Recrystallization and Grain Growth. The volume is divided into nine sections: * Grain growth theory and simulation * Recrystallization theory and simulation * Low carbon and IF steels * High strength steels * Electrical steels * Stainless steels * Aluminum and magnesium alloys * Nickel and nickel based superalloys * Unconventional and advanced materials
This book is about the pattern formation and the evolution of crack propagation in engineering materials and structures, bridging mathematical analyses of cracks based on singular integral equations, to computational simulation of engineering design. The first two parts of this book focus on elasticity and fracture and provide the basis for discussions on fracture morphology and its numerical simulation, which may lead to a simulation-based fracture control in engineering structures. Several design concepts are discussed for the prevention of fatigue and fracture in engineering structures, including safe-life design, fail-safe design, damage tolerant design. After starting with basic elasticity and fracture theories in parts one and two, this book focuses on the fracture morphology that develops due to the propagation of brittle cracks or fatigue cracks. In part three, the mathematical analysis of a curved crack is precisely described, based on the perturbation method. The stability theory of interactive cracks propagating in brittle solids may help readers to understand the formation of a fractal-like cracking patterns in brittle solids, while the stability theory of crack paths helps to identify the straight versus sharply curved or sometimes wavy crack paths observed in brittle solids. In part four, the numerical simulation method of a system of multiple cracks is introduced by means of the finite element method, which may be used for the better implementation of fracture control in engineering structures. This book is part of a series on Mathematics for Industry and will appeal to structural engineers seeking to understand the basic backgrounds of analyses, but also to mathematicians with an interest in how such mathematical solutions are evaluated in industrial applications."
This book presents a systematic and comprehensive exposition of the theory of measurement accuracy and provides solutions that fill significant and long-standing gaps in the classical theory. It eliminates the shortcomings of the classical theory by including methods for estimating accuracy of single measurements, the most common type of measurement. The book also develops methods of reduction and enumeration for indirect measurements, which do not require Taylor series and produce a precise solution to this problem. It produces grounded methods and recommendations for summation of errors. The monograph also analyzes and critiques two foundation metrological documents, the International Vocabulary of Metrology (VIM) and the Guide to the Expression of Uncertainty in Measurement (GUM), and discusses directions for their revision. This new edition adds a step-by-step guide on how to evaluate measurement accuracy and recommendations on how to calculate systematic error of multiple measurements. There is also an extended section on the method of reduction, which provides an alternative to the least-square method and the method of enumeration. Many sections are also rewritten to improve the structure and usability of the material. The 3rd edition reflects the latest developments in metrology and offers new results, and it is designed to be accessible to readers at various levels and positions, including scientists, engineers, and undergraduate and graduate students. By presenting material from a practical perspective and offering solutions and recommendations for problems that arise in conducting real-life measurements, author Semyon Rabinovich offers an invaluable resource for scientists in any field.
Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives, by Nina Aminlashgari and Minna Hakkarainen. Analysis of Polymer Additives and Impurities by Liquid Chromatography/Mass Spectrometry and Capillary Electrophoresis/Mass Spectrometry, by Wolfgang Buchberger and Martin Stiftinger. Direct Insertion Probe Mass Spectrometry of Polymers, by Jale Hacaloglu Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives, by Petra Mischnick. Electrospray Ionization-Mass Spectrometry for Molecular Level Understanding of Polymer Degradation, by Minna Hakkarainen.
Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.
Dynamic Failure of Materials and Structures discusses the topic of dynamic loadings and their effect on material and structural failure. Since dynamic loading problems are very difficult as compared to their static counterpart, very little information is currently available about dynamic behavior of materials and structures. Topics covered include the response of both metallic as well as polymeric composite materials to blast loading and shock loadings, impact loadings and failure of novel materials under more controlled dynamic loads. These include response of soft materials that are important in practical use but have very limited information available on their dynamic response. Dynamic fragmentation, which has re-emerged in recent years has also been included. Both experimental as well as numerical aspects of material and structural response to dynamic loads are discussed. Written by several key experts in the field, Dynamic Failure of Materials and Structures will appeal to graduate students and researchers studying dynamic loadings within mechanical and civil engineering, as well as in physics and materials science.
This book focuses on the thermophysical properties of Ge-Sb-Te alloys, which are the most widely used phase change materials, and the technique for measuring them. Describing the measuring procedure and parameter calibration in detail, it provides readers with an accurate method for determining the thermophysical properties of phase change materials and other related materials. Further, it discusses combining thermal and electrical conductivity data to analyze the conduction mechanism, allowing readers to gain an understanding of phase change materials and PCM industry simulation.
Light scattering is a very powerful method to characterize the structure of polymers and nanoparticles in solution. Recent technical developments have strongly enhanced the possible applications of this technique, overcoming previous limitations like sample turbidity or insufficient experimental time scales. However, despite their importance, these new developments have not yet been presented in a comprehensive form. In addition, and maybe even more important to the broad audience, there lacks a simple-to-read textbook for students and non-experts interested in the basic principles and fundamental techniques of light scattering. As part of the Springer Laboratory series, this book tries not only to provide such a simple-to-read and illustrative textbook about the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, but also intends to cover some of the newest technical developments in experimental light scattering.
This outstanding thesis provides a wide-ranging overview of the growth of titanium dioxide thin films and its use in photo-electrochemicals such as water splitting. The context for water splitting is introduced with the theory of semiconductor-liquid junctions, which are dealt with in detail. In particular plasmonic enhancement of TiO2 by the addition of gold nanoparticles is considered in depth, including a thorough and critical review of the literature, which discusses the possible mechanisms that may be at work. Plasmonic enhancement is demonstrated with gold nanoparticles on Nb-doped TiO2. Finally, the use of temperature and pressure to control the phase and morphology of thin films grown by pulsed laser deposition is presented.
This book presents the detailed results of five task groups of the RILEM technical committee TC 237-SIB on Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems. It concentrates on specific new topics in asphalt binder and mixture testing, dealing with new developments in asphalt testing, in particular also in view of new innovative bituminous materials, such as hot and cold recycled mixtures, grid reinforced pavements and recycled Reclaimed Asphalt Pavements (RAP), where test methods developed for traditional asphalt concrete are not a priori applicable. The main objective is providing a basis for pre-standardization by comparing different test methods and showing ways for fundamental improvements. Thus, the book also points the way for a further advanced chemo-physical understanding of materials and their role in pavement systems relying on fundamental material properties and suitable models for describing and predicting the intrinsic mechanisms that determine the material behavior.
The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.
This book deals with the chemistry of polymeric metal chelates. The main results and the production and chemical structure of polymers with chelate units as well as the specificity of metal complex binding of different structure are presented here. This book also reveals the transformations which components undergo in the course of chelation. Special attention is paid not only to synthetic but also to natural (including living) systems. The usage of polymeric metal chelates and their development are examined. The related research was performed for chelates with chain structure. This book is useful to researchers being active in synthesis and design of macromolecular metal chelates
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Prometheus brought fire to mankind Arthur R. von Hippel "Dielectrics and Waves," 1954 Our contribution? There are only few areas of research and development of a comparable scientific and technological extension as microwave and high frequency processing. "Pr- essing" means not only application of radiation of 300 MHz to 300 GHz f- quency to synthesis, heating or ionisation of matter but also generation, transm- sion and detection of microwave and radio frequency radiation. Microwave and high frequency sources positioned in the orbit are the foun- tion of modern satellite telecommunication systems, gyrotron tubes being pr- ently developed in different countries all over the world will most probably be the major devices to open up a new era of energy supply to mankind be means of - sion plasma. Although initiated by military purposes during the Second World War (RADAR, Radio Detection and Ranging), microwave and high frequency utilisation has spread over almost every important aspect of normal day life since than, from individual mobile phones and kitchen microwave ovens to industrial food processing, production of composites as sustainable building materials, green chemistry, medical applications and finally infrastructure installations like GPS and Galileo, to name only few examples. These different areas of microwave and high frequency radiation application can not be unified within one group of scientists and technologists. There are s- eral distinguished communities active e.g., in the area of telecommunication s- tems, strong microwaves for fusion plasma or plasma based materials processing.
Number 25 of this acclaimed series breaks new ground with articles on charge transfer across liquid-liquid interfaces, electrochemical techniques to study hydrogen ingress in metals, and electrical breakdown of liquids. Also included are articles on the measurement of corrosion and ellipsometry, bringing these older subjects up to date.
F.K. Lehner: A Review of the Linear Theory of Anisotropic Poroelastic Solids. - J.W. Rudnicki: Eshelby's Technique for Analyzing Inhomogeneities in Geomechanics. - Y. Gueguen, M. Kachanov: Effective Elastic Properties of Cracked and Porous Rocks - an Overview. - J.L. Raphanel: 3D Morphology Evolution of Solid-Fluid Interfaces by Pressure Solution. - Y.M. Leroy: An Introduction to the Finite-Element Method for Linear and Non-linear Static Problems. The mechanical behaviour of the earth's upper crust enters into a great variety of questions in different areas of the geological and geophysical sciences as well as in the more applied geotechnical disciplines. This volume presents a selection of papers from a CISM course in Udine on this topic. While each of these chapters will make for a useful contribution in its own right, the present bundle also illustrates, by way of examples, the variety of theoretical concepts and tools that are currently brought to bear on earth deformation studies, ranging from reviews of poroelastic field theory to micro-mechanical and homogenization studies, chemomechanics and interfacial stability theory of soluble solids under stress, and finally to an introduction to the finite element method.
- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results
In this book on Fundamentals of Mass Determination, the definition and dissemination of units of mass is explained, starting with an introduction to metrology and mass determination. Establishing a mass scale requires corresponding mass standards and mass comparators. The metrological requirements for weighing instruments, weight pieces, and measuring conditions are explained and discussed based on international directives and applicable legal regulations. International directives and institutions are striving towards the worldwide uniform implementation of these requirements. Processes used to determine density and volume are described to the extent that they apply to mass determination. Calculating measurement uncertainty entails taking into consideration the effect of influence variables on mass determination. An overview of this topic is provided to make it easier to determine and specify measurement uncertainty in practice, while additional information in the form of tables, illustrations, and literature references allow the reader to study mass metrology further.
Materials metrology is the measurement science used for determining materials property data. An essential element is the symbiosis between the understanding of materials behaviour and the development of suit- able measurement techniques which, through the provision of stand- ards, enable design engineers and plant operators to acquire materials data of appropriate precision. This book is concerned only with those aspects of materials metrology and standards that relate to the design and performance in service ofstructuresand consumerproducts. Itdoes not consider their important role in the processing ofmaterials. Theeditorsare grateful for thecommitmentand patience oftheexperts who contributed the various chapters. In addition, help from staffin the Division ofMaterials Metrology, National Physical Laboratory,inassist- ing with the task of refereeing the chapters is gratefully acknowledged. The production of this book was carried out as part of the Materials Measurement Programme of underpinning research financed by the United Kingdom Department ofTrade and Industry. Brian F. Dyson Malcolm S. Loveday MarkG. Gee Division of Materials Metrology National Physical Laboratory Teddington, TWll OLW UK CHAPTER 1 Materials metrology and standards: an introduction B. F. Dyson, M. S. Loveday and M. G. Gee 1. 1 MATERIALS ASPECTS OF STRUCTURAL DESIGN Knowledge concerning the behaviour of materials has always been vital for the success of manufactured products, but never more so than at the present time.
Characterization is an important and fundamental step in material research before and after processing. This bookfocuses on the characterization of minerals, metals, and materials as well as the application of characterization results on the processing of these materials. It is a highly authoritative collection of articles written by experts from around the world. The articles center on materials characterization, extraction, processing, corrosion, welding, solidification, and method development. In addition, articles focus on clays, ceramics, composites, ferrous metals, non-ferrous metals, minerals, electronic, magnetic, environmental, advanced and soft materials. This book will serve the dual purpose of furnishing a broad introduction of the field to novices while simultaneously serving to keep subject matter experts up-to-date. |
You may like...
X-Ray Fluorescence Spectrometry and…
Eva Margui, Rene Van Grieken
Hardcover
R3,337
Discovery Miles 33 370
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,747
Discovery Miles 47 470
Materials Phase Change PDE Control…
Shumon Koga, Miroslav Krstic
Hardcover
R3,320
Discovery Miles 33 200
Biocomposite Materials - Design and…
Mohamed Thariq Hameed Sultan, Mohd Shukry Abdul Majid, …
Hardcover
R2,994
Discovery Miles 29 940
ZIF-8 Based Materials for Water…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,745
Discovery Miles 47 450
Functional Textiles and Clothing 2020
Abhijit Majumdar, Deepti Gupta, …
Hardcover
R4,957
Discovery Miles 49 570
|