Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
Covers different testing techniques used in quasi static and dynamic material characterization of cellular materials. Discusses additive manufacturing techniques for lattice specimen fabrication. Analyzes different finite element modeling techniques for quasi static and dynamic loading conditions. Presents a comparison and development of a phenomenological material model for use in computational analysis at various loading rates. Explores impact stress wave analysis under high velocity loading.
Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to build a multichannel system necessary to cover a wide range of target substances. Moreover, substances fully screened by metallic enclosures, etc. are difficult to detect. A workshop was held at St Petersburg in July 2008 in an attempt to solve these problems and make NQR the universal technique for the detection of bombs regardless of type. This book presents the essentials of the papers given there.
Photopolarimetric remote sensing is vital in fields as diverse as medical diagnostics, astrophysics, atmospheric science, environmental monitoring and military intelligence. The areas considered here include: radiative transfer; dynamic systems; backscatter polarization; biological systems; astrophysical phenomena; comets; and instrumentation. Subtopics include observational information including determining morphology and chemistry, light-scattering models, and characterization methodologies. While this introductory text highlights the latest advances in this multi-disciplinary topic, it is also a reference guide for the advanced researcher.
This book presents the research advances in the science of measurement, giving special focus to the field of machining and tribology. Topics such as dimensional metrology, precision measurements, industrial metrology, accuracy and precision in measurement are covered. Also theoretical aspects such as modelling and simulation are highlighted.
This book presents various state-of-the-art applications for the development of new materials and technologies, discussing computer-based engineering tools that are widely used in simulations, evaluation of data and design processes. For example, modern joining technologies can be used to fabricate new compound or composite materials, even those composed of dissimilar materials. Such materials are often exposed to harsh environments and must possess specific properties. Technologies in this context are mainly related to the transportation technologies in their wider sense, i.e. automotive and marine technologies, including ships, amphibious vehicles, docks, offshore structures, and robots. This book highlights the importance the finite element and finite volume methods that are typically used in the context of engineering simulations.
Today's manufacturers are under tremendous pressure to develop new technological and high reliability products in record time. This has motivated reliability engineers to evaluate the reliabilities of such products. Reliability testing under accelerated environment - accelerated life testing helps to meet this challenge.This comprehensive and must-have edition provides a broad coverage of the optimal design of Accelerated Life Test Plans under time-varying stress loadings. It also focuses on the formulation of Accelerated Life Test Sampling Plans (ALTSPs) which integrate accelerated life tests with quality control technique of acceptance sampling plans. These plans help to determine optimal experimental variables such as appropriate stress levels, optimal allocation at each stress levels, stress change points, etc, depending on the stress loading scheme. ALTSPs determine optimal plans such that the producers' and consumers' risks are safeguarded.
Complex liquids constitute a basic element in modern materials science; their significant features include self-assembly, mesoscale structures, complex dynamics, unusual phases and enormous sensitivity to perturbations. Understanding their nature and properties are a great challenge to modern materials science that demands novel approaches. This book focuses on nonlinear dielectric phenomena, particularly on nonlinear dielectric spectroscopy (NDS), which may be considered a possible successor to broadband dielectric spectroscopy (BDS). NDS phenomena directly coupled to mesoscale heterogeneity fluctuations, so information obtained in this way is basically complementary to BDS tests. The book also discusses the application of NDS in a set of complex liquid systems: glassy liquids, liquid crystals, liquids with critical point phenomena, and bio-relevant liquids. The complementary application of NDS and BDS may allow the discovery of universal patterns for the whole category of complex liquids. Written by specialists in the field of nonlinear dielectric studies, theoreticians and experimentalists, ranging from solid state physics to biophysics, the book is organized so that it can serve as a basic textbook for a non-experienced reader.
This volume contains most of the invited talks of the 2001 meeting of the Solid State Physics Section of the Deutsche Physikalische Gesellschaft held from March 26 to 30 in Hamburg, Germany. The topics covered reflect the present activities in this lively domain of modern physics and are thus supposed to flashlight the state-of-the-art in condensed matter physics in Germany in the year 2001.
This proceedings brings together one hundred and ten selected papers presented at the 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2015), which was held in Changsha, China, during October 15-18, 2015.To satisfy the increasingly urgent requirement of reducing the weight of vehicle structures and increasing passenger safety, ICHSU2015 provided an excellent international platform for researchers to share their knowledge and results in theory, methodology and applications of advanced high strength steel and press hardening technology.This conference aroused great interests and attentions from domestic and foreign researchers in hot stamping field. Experts in this field from Australia, China, Germany and Sweden, contributed to the collection of research results and developments. The papers cover almost all the current topics of advanced high strength steel and press hardening technology.
Reflection high-energy electron diffraction (RHEED) is the analytical tool of choice for characterizing thin films during growth by molecular beam epitaxy, since it is very sensitive to surface structure and morphology. This book serves as an introduction to RHEED for beginners and describes detailed experimental and theoretical treatments for experts, explaining how to analyze RHEED patterns. For beginners the principles of electron diffraction are explained and many examples of the interpretation of RHEED patterns are described. The second part of the book contains detailed descriptions of RHEED theory. The third part applies RHEED to the determination of surface structures, gives detailed descriptions of the effects of disorder, and critically reviews the mechanisms contributing to RHEED intensity oscillations. This unified and coherent account will appeal to both graduate students and researchers in the study of molecular beam epitaxial growth.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM 2018). The book includes latest research on conventional materials, advanced metals and alloys, polymeric materials and composites. In addition to the characterization of different advanced materials, the book also discusses their applications in various fields such as marine, automotive, aerospace, sporting equipment, and infrastructure. The book offers an insight into the manufacturing of cost-effective and high performance materials products. The contents of this book will be useful for students, academicians, and researchers working in the field of materials science and engineering.
Designing new structural materials, extending lifetimes and guarding against fracture in service are among the preoccupations of engineers, and to deal with these they need to have command of the mechanics of material behaviour. This ought to reflect in the training of students. In this respect, the first volume of this work deals with elastic, elastoplastic, elastoviscoplastic and viscoelastic behaviours; this second volume continues with fracture mechanics and damage, and with contact mechanics, friction and wear. As in Volume I, the treatment links the active mechanisms on the microscopic scale and the laws of macroscopic behaviour. Chapter I is an introduction to the various damage phenomena. Chapter II gives the essential of fracture mechanics. Chapter III is devoted to brittle fracture, chapter IV to ductile fracture and chapter V to the brittle-ductile transition. Chapter VI is a survey of fatigue damage. Chapter VII is devoted to hydrogen embrittlement and to environment assisted cracking, chapter VIII to creep damage. Chapter IX gives results of contact mechanics and a description of friction and wear mechanisms. Finally, chapter X treats damage in non metallic materials: ceramics, glass, concrete, polymers, wood and composites. The volume includes many explanatory diagrams and illustrations. A third volume will include exercises allowing deeper understanding of the subjects treated in the first two volumes.
This book describes the latest research on nanopolysaccharides in the development of functional materials, from their preparation, properties and functional modifications to the architecture of diverse functional materials. Polysaccharide-based nanoparticles, including nanocellulose, nanochitin, and nanostarch have attracted interest in the field of nanoscience, nanotechnology, and materials science that encompasses various industrial sectors, such as biomedicine, catalyst, coating, energy, optical materials, environmental materials, construction materials, and antibacterial materials. This book establishes a fundamental framework, highlighting the architecture strategies of typical functional systems based on nanopolysaccharides and integrated analysis of their significant influence and properties to various functional behaviors of materials, to help readers to fully understand the fundamental features of nanopolysaccharides and functional materials. Addressing the potential for practical applications, the book also covers the related industrial interests and reports on highly valued products from nanopolysaccharides, providing ideas for future studies in the area. Intended both for academics and professionals who are interested in nanopolysaccharides, it is also a valuable resource for postgraduate students, researchers, and engineers involved in R&D of natural polymers, nanotechnology, and functional materials.
Advanced mixed ionic electronic conducting (MIEC) perovskites play an important role in many electrochemical systems for advanced energy technologies. They are major components in such devices as solid oxide fuel cells (SOFCs), oxygen separation membranes, chemical sensors and catalysts. In addition to energy technology, the development of these multifunctional materials is of crucial importance for transportation, aerospace engineering, and electronics. The use of these materials as chemical sensors is also important for anti-terrorism initiatives. The present book discusses progress and problems in the development of ionic, electronic, and MIEC materials as active materials in advanced energy systems; the development and design of solid-oxide fuel cells (SOFCs) for next-generation vehicles, chemical sensors and oxygen separation membranes; and identifies directions for future research, such as conducting mechanisms, stability and reliability of devices, degradation problems, crystal structure, classification of phase transitions exhibited by the materials.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This book focuses on pulverized coal particle devolatilization, ignition, alkali metal release behavior, and burnout temperature using several novel optic diagnostic methods on a Hencken multi-flat flame burner. Firstly, it presents a novel multi-filter technique to detect the CH* signal during coal ignition, which can be used to characterize the volatile release and reaction process. It then offers observations on the prevalent transition from heterogeneous ignition to hetero-homogeneous ignition due to ambient temperature based on visible light signal diagnostics. By utilizing the gap between the excitation energies of the gas and particle phases, a new low-intensity laser-induced breakdown spectroscopy (PS-LIBS) is developed to identify the presence of sodium in the particle or gas phase along the combustion process. For the first time, the in-situ verification of the gas phase Na release accompanying coal devolatilization is fulfilled when the ambient temperature is high enough. In fact, particle temperature plays a vital role in the coal burnout process and ash particle formation. The last part of the book uses RGB color pyrometry and the CBK model to study the char particle temperature on a Hencken burner. It offers readers valuable information on the technique of coal ignition and combustion diagnostics as well as coal combustion characteristics.
Durability of Industrial Composites offers numerical and quantitative solutions to long-term composite failures that are useful to practicing engineers, researchers, and students. All modes of laminate long-term failure are contemplated, with resin toughness and environmental conditions considered. The book develops a simple unified equation to compute the load-dependent durability of laminates under the simultaneous action of cyclic and static loads. The load-independent durability and residual life of equipment immersed in corrosive chemicals are also discussed. The book presents a full discussion of the elusive strain-corrosion mode of failure as well as a complete solution to the durability issue of underground sanitation pipes. The currently accepted durability parameters of HDB, Sb and Sc are discarded as incorrect and replaced with the appropriate threshold parameters. The entirely new concept of the "anomalous failure" is fully discussed and solved. The effects of overpressure and spike strains, as well as of the operating temperature and moisture, are quantitatively evaluated and illustrated in numerical examples.
Corrosion remains one of the key issues affecting the performance and availability of nuclear power plants. Therefore, reliable in-plant corrosion monitoring methods are essential both for the future operation of existing plants and to ensure the safety of future nuclear waste disposal systems. In two parts, this book was stimulated by a workshop organised by EFC Working Party 4 on Nuclear Corrosion and the European Cooperative Group on Corrosion Monitoring of Nuclear Materials (EGC-COMON). The first part deals mainly with research into the detection of stress corrosion crack initiation in nuclear power plant environments (essentially high temperature water at 300 ) by various methods, particularly the electrochemical noise technique but also including the electrochemical impedance, acoustic emission and direct current potential drop methods. The second part addresses the goal to develop in-situ techniques and includes examples of the application of electrochemical corrosion potential monitoring. This book will be of particular interest to scientists and engineers concerned with the mitigation of corrosion in nuclear power plants and the long-term storage of radioactive waste.
This volume collects the papers from the World Conference on Acoustic Emission 2017 (WCAE-2017) in Xi'an, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. This proceedings volume will appeal to students, professors and researchers working in these fields as physicists and/or engineers.
Aimed at those working on stove projects or manufacture of ceramic stoves, this books offers clear explanations of some of the causes of the problems encountered while the stove is in use and gives straightforward methods of avoiding them. The findings of a clay-testing programme carried out with a number of different Asian and African clays are outlined and results show a strong correlation between the clay/non-clay ratio. It describes a method of clay testing, the clay/non clay ratio measurement technique which will reduce the chance of stoves failing through thermally induced stress.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This guide reviews the way asphalt mixture can be specified, with particular emphasis on the test methods used to measure performance. The advantages and limitations of the tests are described for measuring the desired property, and engineers can specify a test according to the material's use. The book starts with a resume of specifications and their relative advantages and disadvantages for different situations. Then different properties are discussed in terms of: their specification; the test methods that can be used (primarily the EN 12697 suite of European methods, of which the author has been responsible for drafting); the extent to which the results predict performance; the levels that can be achieved with different asphalt mixes and types; what levels, if any, should be specified in various situations and pavement layers; and which other properties are adversely affected by enhanced performance. The final section covers various aspects of sustainability, with a strong emphasis on durability. Better understanding should enable clients and consultants who specify pavements to produce durable asphalt pavements more economically, and also help asphalt producers and students trying to understand the black art of asphalt.
This collection addresses the need for sustainable technologies with reduced energy consumption and pollutants and the development and application of alternative sustainable energy to maintain a green environment and energy supply. Contributions focus on energy-efficient technologies including innovative ore beneficiation, smelting technologies, and recycling and waste heat recovery, as well as emerging novel energy technologies. Papers also cover various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management Solar Cell Silicon Advanced Materials for Energy Conversion and Storage
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
The reference provides interdisciplinary discussion for diverse II-VI semiconductors with a wide range of topics. The third volume of a three volume set, the book provides an up-to-date account of the present status of multifunctional II-VI semiconductors, from fundamental science and processing to their applications as various sensors, biosensors, and radiation detectors, and based on them to formulate new goals for the further research. The chapters in this volume provide a comprehensive overview of the manufacture, parameters and principles of operation of these devices. The application of these devices in various fields such medicine, agriculture, food quality control, environment monitoring and others is also considered. The analysis carried out shows the great potential of II-VI semiconductor-based sensors and detectors for these applications. Considers solid-state radiation detectors based on semiconductors of II-VI group and their applications; Analyzes the advantages of II-VI compounds to develop chemical and optical gas and ion sensors;Â Describes all types of biosensors based on II-VI semiconductors and gives examples of their use in various fields. |
You may like...
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,747
Discovery Miles 47 470
Materials Phase Change PDE Control…
Shumon Koga, Miroslav Krstic
Hardcover
R3,320
Discovery Miles 33 200
Biocomposite Materials - Design and…
Mohamed Thariq Hameed Sultan, Mohd Shukry Abdul Majid, …
Hardcover
R2,994
Discovery Miles 29 940
ZIF-8 Based Materials for Water…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,745
Discovery Miles 47 450
Functional Textiles and Clothing 2020
Abhijit Majumdar, Deepti Gupta, …
Hardcover
R4,957
Discovery Miles 49 570
Polyvinyl Alcohol/Halloysite Nanotube…
Zainab Waheed Abdullah, Yu Dong
Hardcover
R3,508
Discovery Miles 35 080
Intelligent Quality Assessment of…
Roberto Galeazzi, Hilmar Kjartansson Danielsen, …
Hardcover
R4,909
Discovery Miles 49 090
|