![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned.Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
The growing use of polymer composites is leading to increasing
demand for fractographic expertise. Fractography is the study of
fracture surface morphologies and it gives an insight into damage
and failure mechanisms, underpinning the development of
physically-based failure criteria. In composites research it
provides a crucial link between predictive models and experimental
observations. Finally, it is vital for post-mortem analysis of
failed or crashed polymer composite components, the findings of
which can be used to optimise future designs.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Durability of Industrial Composites offers numerical and quantitative solutions to long-term composite failures that are useful to practicing engineers, researchers, and students. All modes of laminate long-term failure are contemplated, with resin toughness and environmental conditions considered. The book develops a simple unified equation to compute the load-dependent durability of laminates under the simultaneous action of cyclic and static loads. The load-independent durability and residual life of equipment immersed in corrosive chemicals are also discussed. The book presents a full discussion of the elusive strain-corrosion mode of failure as well as a complete solution to the durability issue of underground sanitation pipes. The currently accepted durability parameters of HDB, Sb and Sc are discarded as incorrect and replaced with the appropriate threshold parameters. The entirely new concept of the "anomalous failure" is fully discussed and solved. The effects of overpressure and spike strains, as well as of the operating temperature and moisture, are quantitatively evaluated and illustrated in numerical examples.
This volume collects the papers from the World Conference on Acoustic Emission 2017 (WCAE-2017) in Xi'an, China. The latest research and applications of acoustic emission (AE) are explored, with a particular emphasis on detecting and processing AE signals, the development of AE instrument and testing standards, AE of materials, engineering structures and systems, including the processing of collected data and analytical techniques. Numerous case studies are also included. This proceedings volume will appeal to students, professors and researchers working in these fields as physicists and/or engineers.
This book is a compilation of selected papers presented in the International Conference on the theme 'Wood is Good: Current Trends and Future Prospects in Wood'. The contents of the book deal with recent innovations, trends and challenges in wood science and are grouped in five distinct sections. They cover a wide range of topics like wood variability, processing and utilization, wood protection, wood-based composites, wood energy and the role of wood in mitigating climate change. With the ever increasing human population and growing demand for wood, this book offers valuable insights for better understanding and efficient utilization of this wonderful gift of nature. This book will be useful to researchers, professionals, and policy makers involved in forestry and wood related areas.
"Materials and Reliability Handbook for Semiconductor Optical and Electron Devices" provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The" Handbook "addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The "Handbook" emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms."
This book presents a collection of papers presented at the 3rd World Congress on Integrated Computational Materials Engineering (ICME), a specialty conference organized by The Minerals, Metals & Materials Society (TMS). This meeting convened ICME stakeholders to examine topics relevant to the global advancement of ICME as an engineering discipline. The papers presented in these proceedings are divided into six sections: (1) ICME Applications; (2) ICME Building Blocks; (3) ICME Success Stories and Applications (4) Integration of ICME Building Blocks: Multi-scale Modeling; (5) Modeling, Data and Infrastructure Tools, and (6) Process Optimization. . These papers are intended to further the global implementation of ICME, broaden the variety of applications to which ICME is applied, and ultimately help industry design and produce new materials more efficiently and effectively.
This book highlights the latest advances in AFM nano-manipulation research in the field of nanotechnology. There are numerous uncertainties in the AFM nano-manipulation environment, such as thermal drift, tip broadening effect, tip positioning errors and manipulation instability. This book proposes a method for estimating tip morphology using a blind modeling algorithm, which is the basis of the analysis of the influence of thermal drift on AFM scanning images, and also explains how the scanning image of AFM is reconstructed with better accuracy. Further, the book describes how the tip positioning errors caused by thermal drift and system nonlinearity can be corrected using the proposed landmark observation method, and also explores the tip path planning method in a complex environment. Lastly, it presents an AFM-based nano-manipulation platform to illustrate the effectiveness of the proposed method using theoretical research, such as tip positioning and virtual nano-hand.
This guide reviews the way asphalt mixture can be specified, with particular emphasis on the test methods used to measure performance. The advantages and limitations of the tests are described for measuring the desired property, and engineers can specify a test according to the material's use. The book starts with a resume of specifications and their relative advantages and disadvantages for different situations. Then different properties are discussed in terms of: their specification; the test methods that can be used (primarily the EN 12697 suite of European methods, of which the author has been responsible for drafting); the extent to which the results predict performance; the levels that can be achieved with different asphalt mixes and types; what levels, if any, should be specified in various situations and pavement layers; and which other properties are adversely affected by enhanced performance. The final section covers various aspects of sustainability, with a strong emphasis on durability. Better understanding should enable clients and consultants who specify pavements to produce durable asphalt pavements more economically, and also help asphalt producers and students trying to understand the black art of asphalt.
This book collects several contributions presented at the 2019 meeting of the Italian Synchrotron Radiation Society (SILS), held in Camerino, Italy, from 9 to 11 September 2019. Topics included are recent developments in synchrotron radiation facilities and instrumentation, novel methods for data analysis, applications in the fields of materials physics and chemistry, Earth and environmental science, coherence in x-ray experiments. The book is intended for advanced students and researchers interested in synchrotron-based techniques and their application in diverse fields.
Synchrotron radiation is today extensively used for fundamental and applied research in many different fields of science. Its exceptional characteristics in terms of intensity, brilliance, spectral range, time structure and now also coherence pushed many experimental techniques to previously un-reachable limits, enabling the performance of experiments unbelievable only few years ago. The book gives an up-to-date overview of synchrotron radiation research today with a view to the future, starting from its generation and sources, its interaction with matter, illustrating the main experimental technique employed and provides an overview of the main fields of research in which new and innovative results are obtained. The book is addressed to PhD students and young researchers to provide both an introductory and a rather deep knowledge of the field. It will also be helpful to experienced researcher who want to approach the field in a professional way.
This collection addresses the need for sustainable technologies with reduced energy consumption and pollutants and the development and application of alternative sustainable energy to maintain a green environment and energy supply. Contributions focus on energy-efficient technologies including innovative ore beneficiation, smelting technologies, and recycling and waste heat recovery, as well as emerging novel energy technologies. Papers also cover various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management Solar Cell Silicon Advanced Materials for Energy Conversion and Storage
Fiber sensing technologies have enabled both fundamental studies and a wide spectrum of applications in every aspect of life. This book highlights the recent advancement in fiber sensing technologies based on newly developed sensing mechanisms, advanced fiber structures, and functional materials. In particular, the integration of functional materials with different electrical, optical, thermal, or mechanical properties into a single fiber offers a wealth of new opportunities in sensing. The book covers the major developments in novel fiber materials, such as semiconductors, metals, polymers, soft glasses, and carbon materials, as well as the sensing applications based on both single fiber and multi-dimensional fiber arrays for temperature, light, strain, vibration, electric and magnetic fields, hazardous chemicals, gases, and physiological signals.
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.
This book offers an essential introduction to the linear and non-linear behavior of solid materials, and to the concepts of deformation, displacement and stress, within the context of continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of solid mechanics, experimental methods, classes of material behaviors, and the thermodynamic modeling framework. It then explores linear elastic behavior, thermoelasticity, plasticity, viscoplasticity, fracture mechanics and damage behavior. The last part of the book is devoted to conventional and magnetic shape memory alloys, which may be used as actuators or sensors in adaptive structures. Given its range of coverage, the book will be especially valuable for students of engineering courses in Mechanics. Further, it includes a wealth of examples and exercises, making it accessible to the widest possible audience.
This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.
Tensor Calculus and Analytical Dynamics provides a concise,
comprehensive, and readable introduction to classical tensor
calculus - in both holonomic and nonholonomic coordinates - as well
as to its principal applications to the Lagrangean dynamics of
discrete systems under positional or velocity constraints. The
thrust of the book focuses on formal structure and basic
geometrical/physical ideas underlying most general equations of
motion of mechanical systems under linear velocity
constraints.
Featuring a model-based approach to fault detection and diagnosis in engineering systems, this book contains up-to-date, practical information on preventing product deterioration, performance degradation and major machinery damage.;College or university bookstores may order five or more copies at a special student price. Price is available upon request.
This book discusses the latest investigations into the electronic structure of narrow-gap semiconductors in extreme conditions, and describes in detail magnetic field and pressure measurements using two high-quality single crystals: black phosphorus (BP) and lead telluride (PbTe). The book presents two significant findings for BP and PbTe. The first is the successful demonstration of the pressure-induced transition from semiconductor to semimetal in the electronic structure of BP using magnetoresistance measurements. The second is the quantitative estimation of how well the Dirac fermion description works for electronic properties in PbTe. The overviews on BP and PbTe from the point of view of material properties help readers quickly understand the typical electronic character of narrow-gap semiconductor materials, which has recently attracted interest in topological features in condensed matter physics. Additionally the introductory review of the principles and methodology allows readers to understand the high magnetic field and pressure experiments.
Bringing together contributions on a diverse range of topics, this text explores the relationship between discrete and continuum mechanics as a tool to model new and complex metamaterials. Providing a comprehensive bibliography and historical review of the field, it covers mechanical, acoustic and pantographic metamaterials, discusses Naive Model Theory and Lagrangian discrete models, and their applications, and presents methods for pantographic structures and variational methods for multidisciplinary modeling and computation. The relationship between discrete and continuous models is discussed from both mathematical and engineering viewpoints, making the text ideal for those interested in the foundation of mechanics and computational applications, and innovative viewpoints on the use of discrete systems to model metamaterials are presented for those who want to go deeper into the field. An ideal text for graduate students and researchers interested in continuum approaches to the study of modern materials, in mechanical engineering, civil engineering, applied mathematics, physics, and materials science.
A Guide to Materials Characterization and Chemical Analysis Second Edition Edited by John P. Sibilia This book provides an overview of the most current techniques used for chemical analysis, materials evaluation, and materials testing. Over 100 materials methodologies, evaluations, chemical analyses, physical testing, and scientific computing techniques are covered, including the fields of molecular spectroscopy, mass spectroscopy, chromatography, chemical analysis, x-ray analysis, microscopy, surface science, thermal analysis, and polymer characterization. All of the techniques are explained in a clear, easy-to-read format and are discussed in terms of their use, sample requirements, and the underlying chemical, physical, and engineering principles. Many real-life industrial and academic applications are included to give the reader a true feel for the significance and uses of each technique, enabling him or her to identify the best approach for solving a particular problem. For each technique, a section is included that describes its advantages and limitations, along with general references for further reading. A Guide to Materials Characterization and Chemical Analysis, Second Edition, will be of interest to analytical, inorganic, organic, and physical chemists; physicists; materials scientists; chemical engineers; and instructors and students in materials science and instrumental analysis. |
You may like...
Fast Fourier Transform - Algorithms and…
K.R. Rao, Do Nyeon Kim, …
Hardcover
R2,627
Discovery Miles 26 270
Functional Analysis in Interdisciplinary…
Tynysbek Sh. Kalmenov, Erlan D. Nursultanov, …
Hardcover
R2,732
Discovery Miles 27 320
Stochastic Processes - Estimation…
Kaddour Najim, Enso Ikonen, …
Hardcover
R4,310
Discovery Miles 43 100
Geometric Methods in PDE's
Giovanna Citti, Maria Manfredini, …
Hardcover
Malliavin Calculus and Stochastic…
Frederi Viens, Jin Feng, …
Hardcover
R2,761
Discovery Miles 27 610
Functional Analysis - Applications in…
Leonid P. Lebedev, Iosif I. Vorovich, …
Hardcover
R2,674
Discovery Miles 26 740
|