![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials > General
The main goal of the book is a coherent treatment of the theory
of propagation in materials of nonlinearly elastic waves of
displacements, which corresponds to one modern line of development
of the nonlinear theory of elastic waves.
"...a comprehensive and well written book, which...will be useful reading for both researchers entering the field and experienced specialists looking for new ideas....a valuable and long-lasting contribution to experimental mechanics." - Stepan Lomov, KU Leuven This expert volume, an enhanced Habilitation thesis by the head of the Materials Testing Research Group at the University of Augsburg, provides detailed coverage of a range of inspection methods for insitu characterization of fiber-reinforced composites. The failure behavior of fiber reinforced composites is a complex evolution of microscopic damage phenomena. Beyond the use of classical testing methods, the ability to monitor the progression of damage insitu offers new ways to interpret the materials failure modes. Methods covered include digital image correlation, acoustic emission, electromagnetic emission, computed tomography, thermography, shearography, and promising method combinations. For each method, the discussion includes operational principles and practical applications for quality control as well as thoughtful assessment of the method's strengths and weakness so that the reader is equipped to decide which method or methods are most appropriate in a given situation. The book includes extensive appendices covering common experimental parameters influencing comparability of acoustic emission measurements; materials properties for modeling; and an overview of terms and abbreviations.
This book discusses the theoretical foundations of the structural modeling method applied to metamaterials. This method takes into account the parameters of the crystal lattice, the size of the medium particles, as well as their shape and constants of force interactions between them. It provides mathematical models of metamaterials that offer insights into the qualitative influence of the local structure on the effective elastic moduli of the considered medium and into performing theoretical estimations of these quantities. This book is useful for researchers working in the fields of solid mechanics, physical acoustics, and condensed matter physics, as well as for graduate and postgraduate students studying mathematical modeling methods.
The book presents recent developments in the field of composites, investigated by Broadband Dielectric Spectroscopy (BDS) and sheds a special focus on nanocomposites. This volume compares the results obtained by BDS with data from other methods like hyphenated calorimetry, dynamical-mechanical spectroscopy, NMR spectroscopy and neutron scattering. The addressed systems range from all kinds of model systems, such as polymers filled with spherical silica particles, advanced materials such as polymers with molecular stickers or hyperbranched polymer-based matrices to industrially significant systems, like epoxy-based materials. The book offers an excellent insight to a valuable application of dielectric spectroscopy and it is a helpful guide for every scientist who wants to study dynamics in composite materials.
This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials. Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
The author offers practical coverage of vibration stresses and stress-induced displacements, isolation of sensitive components, and evaluation of elastic instability, fatigue and fracture as potential failure modes that arise in mechanical designs and aerospace. The approach taken is particularly useful in the early design stage - the physical problem is defined via known parameters, and a methodology is given for determining the unknown quantities and relating them to specified limiting values and failure modes to obtain an acceptable design. Many of the calculations can be performed on a PC or programmable calculator.
Presents, for the first time, the new method, named the "flow measurement reaction method", and the "reaction flow meters", configured by its implementation so far. Systematic detailing of all basic types of reaction flowmeters, according to their presented general classification and following the evolution of their structural and functional complexity. Explores and demonstrates the universal application of "the reaction force method of flow measurement" for configuration of the reaction flowmeters both without and with moving parts, respectively of their specific connections. Unitary, consistent and coherent presentation, in a logical sequence, of all different basic types of reaction flowmeters, following the same manner (basic configuration and operation, functional equations, constructive solutions, main features). The book is an efficient tool for predictable design of new types of reaction flowmeters, by following the logical steps (questions) already taken in the configuration of the reaction flowmeters presented, and the diversification of the answers given to them.
Finite Element Analysis of Solids and Structures combines the theory of elasticity (advanced analytical treatment of stress analysis problems) and finite element methods (numerical details of finite element formulations) into one academic course derived from the author's teaching, research, and applied work in automotive product development as well as in civil structural analysis. Features Gives equal weight to the theoretical details and FEA software use for problem solution by using finite element software packages Emphasizes understanding the deformation behavior of finite elements that directly affect the quality of actual analysis results Reduces the focus on hand calculation of property matrices, thus freeing up time to do more software experimentation with different FEA formulations Includes chapters dedicated to showing the use of FEA models in engineering assessment for strength, fatigue, and structural vibration properties Features an easy to follow format for guided learning and practice problems to be solved by using FEA software package, and with hand calculations for model validation This textbook contains 12 discrete chapters that can be covered in a single semester university graduate course on finite element analysis methods. It also serves as a reference for practicing engineers working on design assessment and analysis of solids and structures. Teaching ancillaries include a solutions manual (with data files) and lecture slides for adopting professors.
Nanoindentation, Third Edition gives a detailed account of the most up-to-date research in this important field of materials testing. As in previous editions, extensive theoretical treatments are provided and explained in a clear and consistent manner that will satisfy both experienced and novice scientists and engineers. Additionally, numerous examples of the applications of the technique are provided directly from manufacturers of nanoindentation instruments. A helpful series of appendices provides essential reference information that includes a list of frequently asked questions. The new edition has been restructured to provide results of the latest research and developments in the field of mechanical testing while retaining the essential background and introductory, but authoritative nature, of the previous editions. The new edition also expands on the instrumentation and applications chapters by including material sourced direct from the instrument manufacturers in this field. Aimed at graduate student level, this book is designed to fill a need associated with the use of nanoindentation as a quantitative test method for mechanical properties of small volumes of materials.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM) 2019. It covers latest findings and challenges in manufacturing processes and characterization of different advanced materials. Latest fabrication techniques of polymer based materials, biomaterials, and energy materials along with their practical applications are discussed. The contents also focus on cost-effective and energy-efficient sustainable and green manufacturing technologies. The contents of this book will be useful for students, researchers as well as industry professionals interested in characterization and fabrication of materials.
This thesis shares new findings on the interfacial mechanics of graphene-based materials interacting with rigid/soft substrate and with one another. It presents an experimental platform including various loading modes that allow nanoscale deformation of atomically thin films, and a combination of atomic force microscopy (AFM) and Raman spectroscopy that allows both displacement and strain to be precisely measured at microscale. The thesis argues that the rich interfacial behaviors of graphene are dominated by weak van der Waals force, which can be effectively modulated using chemical strategies. The continuum theories are demonstrated to be applicable to nano-mechanics and can be used to predict key parameters such as shear/friction and adhesion. Addressing key interfacial mechanics issues, the findings in thesis not only offer quantitative insights in the novel features of friction and adhesion to be found only at nanoscale, but will also facilitate the deterministic design of high-performance graphene-based nanodevices and nanocomposites.
This volume represents 27 peer-reviewed papers presented at the ICOP 2013 symposium which will help conservators and curators recognise problems and interpret visual changes on paintings, which in turn give a more solid basis for decisions on the treatment of these paintings. The subject matter ranges from developments of paint technology, working methods of individual artists, through characterisation of paints and paint surfaces, paint degradation vs. long time stability, to observations of issues in collections, cleaning and other treatment issues as well as new conservation approaches.
This book elaborates the corrosion testing and assessment methods for the aluminum alloy vessel in the service and internal environment. The emphasis is placed on the research of general materials corrosion characteristics, electrochemical protection design, surface protection, coating and painting, etc. This book helps readers to keep abreast of the whole technology system of the corrosion prevention and control of aluminum alloy vessel, especially the systematic engineering view of life cycle corrosion control for the vessel is of particular interest to readers.
The book explores the two opposite natural trends of composite systems: (i) order and structure emerging from heterogeneity and randomness, and (ii) instability and chaos arising from simple nonlinear rules. Providing insights into the rapidly growing field of complexity sciences, the book focuses on the role of complexity in fracture mechanics. It firstly discusses the occurrence of self-similarity and fractal patterns in deformation, damage, fracture, and fragmentation of heterogeneous materials and the apparent scaling of the nominal mechanical properties of disordered materials, as well as of the time-to-failure after fatigue and creep loading. Then the book addresses criticality in the acoustic emissions from damaged structures and tectonic faults. Further, it examines the snap-back instability in the structural behavior of relatively large composite structures in the framework of catastrophe theory, and lastly describes the transition toward chaos in the dynamics of cracked elements.
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators, materials of significant importance for spin electronics, are discussed. Particular emphasis, hereby, is laid on the new type of topologically protected surface states with well-defined spin orientation. Furthermore, some important well established experimental techniques such as X-ray diffraction (XRD) and reflection anisotropy spectroscopy (RAS), which were missing so far in earlier editions, were added in this new 6th edition of the book.
This volume presents an in-depth review of experimental and theoretical studies on the newly discovered Fe-based superconductors. Following the Introduction, which places iron-based superconductors in the context of other unconventional superconductors, the book is divided into three sections covering sample growth, experimental characterization, and theoretical understanding. To understand the complex structure-property relationships of these materials, results from a wide range of experimental techniques and theoretical approaches are described that probe the electronic and magnetic properties and offer insight into either itinerant or localized electronic states. The extensive reference lists provide a bridge to further reading. Iron-Based Superconductivity is essential reading for advanced undergraduate and graduate students as well as researchers active in the fields of condensed matter physics and materials science in general, particularly those with an interest in correlated metals, frustrated spin systems, superconductivity, and competing orders.
This book brings together numerous contributions to the field of magnetoelectric (ME) composites that have been reported so far. Theoretical models of ME coupling in composites relate to the wide frequency range: from low-frequency to microwave ones and are based on simultaneous solving the elastostatic/elastodynamic and electrodynamics equations. Suggested models enable one to optimize magnetoelectric parameters of a composite. The authors hope to provide some assimilation of facts into establish knowledge for readers new to the field, so that the potential of the field can be made transparent to new generations of talent to advance the subject matter.
This two-volume book covers a wide range of experimental methods for testing and assessing buckling behavior for a variety of structures. It summarizes the state of the art of buckling theory and computations, and then investigates systematically the parameters that influence test results such as imperfections, boundary conditions, loading conditions, and residual stresses. Many typical tests are discussed and evaluated in detail in both volumes. This first volume addresses basic concepts, columns, beams, arches, and plates. The second volume covers shells, stiffened plates and composite structures, plastic buckling, cutout and damage effects, buckling under dynamic loads, thermal buckling and nondestructive tests.
The growing use of polymer composites is leading to increasing
demand for fractographic expertise. Fractography is the study of
fracture surface morphologies and it gives an insight into damage
and failure mechanisms, underpinning the development of
physically-based failure criteria. In composites research it
provides a crucial link between predictive models and experimental
observations. Finally, it is vital for post-mortem analysis of
failed or crashed polymer composite components, the findings of
which can be used to optimise future designs.
The second edition of Gesser's classic Applied Chemistry includes updated versions of the original 16 chapters plus two new chapters on semiconductors and nanotechnology. This textbook introduces chemistry students to the applications of their field to engineering design and function across a wide range of subjects, from fuels and polymers to electrochemistry and water treatment. Each chapter concludes with a reading list of relevant books and articles as well as a set of exercises which include problems that extend the topics beyond the text. Other supplements to the text include a laboratory section with step-by-step experiments and a solutions manual for instructors.
This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.
This book comprises the proceedings of the conference "Future Production of Hybrid Structures 2020", which took place in Wolfsburg. The conference focused on hybrid lightweight design, which is characterized by the combination of different materials with the aim of improving properties and reducing weight. In particular, production technologies for hybrid lightweight design were discussed, new evaluation methods for the ecological assessment of hybrid components were presented and future-oriented approaches motivated by nature for the development of components, assemblies and systems were introduced. Lightweight design is a key technology for the development of sustainable and resource-efficient mobility concepts. Vehicle manufacturers operate in an area of conflict between customer requirements, competition and legislation. Material hybrid structures, which combine the advantages of different materials, have a high potential for reducing weight, while simultaneously expanding component functionality. The future, efficient use of function-integrated hybrid structures in vehicle design requires innovations and constant developments in vehicle and production technology. There is a great demand, especially with regard to new methods and technologies, for "affordable" lightweight construction in large-scale production, taking into account the increasing requirements with regard to variant diversity, safety and quality.
The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues. |
You may like...
The Forest Service - Fighting for Public…
Gerald W. Williams
Hardcover
Forests for People - Community Rights…
Anne M Larson, Deborah Barry, …
Hardcover
R4,505
Discovery Miles 45 050
Sustainability, Citizen Participation…
Hoi L. Kong, Tanya Monforte
Hardcover
R1,823
Discovery Miles 18 230
What Springs of Rain - Flora and Fauna…
Lindsay Erin Lough
Hardcover
Ecology of Riparian Forests in Japan…
Hitoshi Sakio, Toshikazu Tamura
Hardcover
R4,056
Discovery Miles 40 560
Materials, Chemicals and Energy from…
Dimitris S. Argyropoulos
Hardcover
R7,042
Discovery Miles 70 420
Treasury of Folklore: Woodlands and…
Dee Dee Chainey, Willow Winsham
Hardcover
|