Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Biochemical engineering > Biotechnology > Genetic engineering
The history of life is a nearly four billion year old story of transformative change. This change ranges from dramatic macroscopic innovations such as the evolution of wings or eyes, to a myriad of molecular changes that form the basis of macroscopic innovations. We are familiar with many examples of innovations (qualitatively new phenotypes that can provide a critical advantage) but have no systematic understanding of the principles that allow organisms to innovate. This book proposes several such principles as the basis of a theory of innovation, integrating recent knowledge about complex molecular phenotypes with more traditional Darwinian thinking. Central to the book are genotype networks: vast sets of connected genotypes that exist in metabolism and regulatory circuitry, as well as in protein and RNA molecules. The theory can successfully unify innovations that occur at different levels of organization. It captures known features of biological innovation, including the fact that many innovations occur multiple times independently, and that they combine existing parts of a system to new purposes. It also argues that environmental change is important to create biological systems that are both complex and robust, and shows how such robustness can facilitate innovation. Beyond that, the theory can reconcile neutralism and selectionism, as well as explain the role of phenotypic plasticity, gene duplication, recombination, and cryptic variation in innovation. Finally, its principles can be applied to technological innovation, and thus open to human engineering endeavours the powerful principles that have allowed life's spectacular success.
The history of life is a nearly four billion year old story of transformative change. This change ranges from dramatic macroscopic innovations such as the evolution of wings or eyes, to a myriad of molecular changes that form the basis of macroscopic innovations. We are familiar with many examples of innovations (qualitatively new phenotypes that can provide a critical benefit) but have no systematic understanding of the principles that allow organisms to innovate. This book proposes several such principles as the basis of a theory of innovation, integrating recent knowledge about complex molecular phenotypes with more traditional Darwinian thinking. Central to the book are genotype networks: vast sets of connected genotypes that exist in metabolism and regulatory circuitry, as well as in protein and RNA molecules. The theory can successfully unify innovations that occur at different levels of organization. It captures known features of biological innovation, including the fact that many innovations occur multiple times independently, and that they combine existing parts of a system to new purposes. It also argues that environmental change is important to create biological systems that are both complex and robust, and shows how such robustness can facilitate innovation. Beyond that, the theory can reconcile neutralism and selectionism, as well as explain the role of phenotypic plasticity, gene duplication, recombination, and cryptic variation in innovation. Finally, its principles can be applied to technological innovation, and thus open to human engineering endeavours the powerful principles that have allowed life's spectacular success.
Appropriate for a wide range of disciplines, from biology to
non-biology, law and nursing majors, "DNA and Biotechnology" uses a
straightforward and comprehensive writing style that gives the
educated layperson a survey of DNA by presenting a brief history of
genetics, a clear outline of techniques that are in use, and
highlights of breakthroughs in hot topic scientific
discoveries. Engaging and straightforward scientific writing style Comprehensive forensics chapter Parallel Pedagogic material designed to help both readers and teachers. Highlights in the latest scientific discoveries Outstanding full-color illustration that walk reader through complex concepts
Plants, being sessile and autotrophic in nature, must cope with challenging environmental aberrations and therefore have evolved various responsive or defensive mechanisms including stress sensing mechanisms, antioxidant system, signaling pathways, secondary metabolites biosynthesis, and other defensive pathways among which accumulation of osmolytes or osmo-protectants is an important phenomenon. Osmolytes with organic chemical nature termed as compatible solutes are highly soluble compounds with no net charge at physiological pH and nontoxic at higher concentrations to plant cells. Compatible solutes in plants involve compounds like proline, glycine betaine, polyamines, trehalose, raffinose family oligosaccharides, fructans, gamma aminobutyric acid (GABA), and sugar alcohols playing structural, physiological, biochemical, and signaling roles during normal plant growth and development. The current and sustaining problems of climate change and increasing world population has challenged global food security. To feed more than 9 billion, the estimated population by 2050, the yield of major crops needs to be increased 1.1-1.3% per year, which is mainly restricted by the yield ceiling. A major factor limiting the crop yield is the changing global environmental conditions which includes drought, salinity and extreme temperatures and are responsible for a reduction of crop yield in almost all the crop plants. This condition may worsen with a decrease in agricultural land or the loss of potential crop yields by 70%. Therefore, it is a challenging task for agricultural scientists to develop tolerant/resistant varieties against abiotic stresses. The development of stress tolerant plant varieties through conventional breeding is very slow due to complex multigene traits. Engineering compatible solutes biosynthesis by deciphering the mechanism behind the abiotic tolerance or accumulation in plants cell is a potential emerging strategy to mitigate adverse effects of abiotic stresses and increase global crop production. However, detailed information on compatible solutes, including their sensing/signaling, biosynthesis, regulatory components, underlying biochemical mechanisms, crosstalk with other signaling pathways, and transgenic development have not been compiled into a single resource. Our book intends to fill this unmet need, with insight from recent advances in compatible solutes research on agriculturally important crop plants.
Plants are an important source of fats and oils, which are essential for the human diet. In recent years, genomics of oil biosynthesis in plants have attracted great interest, especially in high oil-bearing plants, such as sesame, olive, sunflower, and palm. Considering that, genome sequencing projects of these plants have been undertaken with the help of advanced genomics tools such as next generation sequencing. Several genome sequencing projects of oil crops are in progress and many others are en route. In addition to genome information, advanced genomics approaches are discussed such as transcriptomics, genomics-assisted breeding, genome-wide association study (GWAS), genotyping by sequencing (GBS), and CRISPR. These have all improved our understanding of the oil biosynthesis mechanism and breeding strategies for oil production. There is, however, no book that covers the genomes and genomics of oil crops. For this reason, in this volume we collected the most recent knowledge of oil crop genomics for researchers who study oil crop genomes, genomics, biotechnology, pharmacology, and medicine. This book covers all genome-sequenced oil crops as well as the plants producing important oil metabolites. Throughout this book, the latest genomics developments and discoveries are highlighted as well as open problems and future challenges in oil crop genomics. In doing so, we have covered the state-of-the-art of developments and trends of oil crop genomics.
This book is the first comprehensive assemblage of contemporary knowledge relevant to genomics and other omics in date palm. Volume 2 consists of 11 chapters. Part I, Nutritional and Pharmaceuticals Properties, covers the utilization of date palm as an ingredient of various food products, a source of bioactive compounds and the production of nanomaterials. Part II, Omics Technologies, addresses omics resources, proteomics and metabolomics. Part III, Molecular Breeding and Genome Modification, focuses on genetic improvement technologies based on mutagenesis, quantitative traits loci and genome editing. Part IV, Genomics of Abiotic and Biotic Stress, covers metagenomics of beneficial microbes to enhance tolerance to abiotic stress and the various genomics advances as they apply to insect control. This volume represents the efforts of 34 international scientists from 12 countries and contains 65 figures and 19 tables to illustrate presented concepts. Volume 1 is published under the title: Phylogeny, Biodiversity and Mapping.
Omics in Horticulture Crops presents a comprehensive view of germplasm diversity, genetic evolution, genomics, proteomics and transcriptomics of fruit crops (temperate, tropical and subtropical fruits, fruit nuts, berries), vegetables, tuberous crops, ornamental and floricultural crops and medicinal aromatic plants. Information covering phenomics, genetic diversity, phylogenetic studies, genome sequencing, and genome barcoding through the utilization of molecular markers plays an imperative role in the characterization and effective utilization of diverse germplasm are included in the book. This is a valuable reference for researchers and academics seeking to improve cultivar productivity through enhanced genetic diversity while also retaining optimal traits and protecting the growing environment.
This resource provides thorough coverage of pharmacogenetics and its impact on pharmaceuticals, therapeutics, and clinical practice. It opens with the basics of pharmacogenetics, including drug disposition and pharmacodynamics. The following section moves into specific disease areas, including cardiovascular, psychiatry, cancer, asthma/COPD, adverse drug reactions, transplantation, inflammatory bowel disease, and pain medication. Clinical practice and ethical issues make up the third section, with the fourth devoted to technologies like genotyping, genomics, and proteomics. In the fifth part, chapters discuss the impact of key regulatory issues on the pharmaceutical industry.
Caenorhabditis elegans has been a popular model organism for biological research for over thirty years with a dramatic increase in interest since the publication of the entire genome sequence in 1998. It is currently the only multicellular animal to have its entire genome sequenced. This Practical Approach book provides all the essential background information required for use of C. elegans as a model system and includes information on how to use the genome sequence information.
Gene targeting is the introduction of genomic DNA into a specific location on the host genome. It is used to make a variety of specific mutations so the phenotypic consequences of specific genetic modifications can be studied.
The increasing integration between gene manipulation and genomics is embraced in this new book, Principles of Gene Manipulation and Genomics, which brings together for the first time the subjects covered by the best-selling books Principles of Gene Manipulation and Principles of Genome Analysis & Genomics. * Comprehensively revised, updated and rewritten to encompass within one volume, basic and advanced gene manipulation techniques, genome analysis, genomics, transcriptomics, proteomics and metabolomics * Includes two new chapters on the applications of genomics * An accompanying website - www.blackwellpublishing.com/primrose - provides instructional materials for both student and lecturer use, including multiple choice questions, related websites, and all the artwork in a downloadable format. * An essential reference for upper level undergraduate and graduate students of genetics, genomics, molecular biology and recombinant DNA technology. An Instructor manual CD-ROM for this title is available. Please contact our Higher Education team at [email protected] for more information.
This book provides a comprehensive overview of the basic and advanced metabolic engineering technologies used to generate natural metabolites and industrially important biomolecules. Metabolic engineering has the potential to produce large quantities of valuable biomolecules in a renewable and sustainable manner by extending or modifying biosynthetic pathways in a wide range of organisms. It has been successfully used to produce chemicals, drugs, enzymes, amino acids, antibiotics, biofuels, and industrially important pharmaceuticals. The book comprehensively reviews the various metabolites detection, extraction and biosensors and the metabolic engineering of microbial strains for the production of industrially useful enzymes, proteins, organic acids, vitamins and antibiotics, therapeutics, chemicals, and biofuels. It also discusses various genetic engineering and synthetic biology tools for metabolic engineering. In closing, the book discusses ethical, patenting and regulatory issues in the metabolic engineering of microbes. This book is a valuable source not only for beginners in metabolic engineering, but also students, researchers, biotechnology and metabolic engineering based company.
This book identifies targets for plant transformation by molecular biology for two crops of major importance in European agriculture - wheat and oilseed rape - and the potentially important protein crop faba beans. Modern techniques have enabled researchers to identify, isolate and modify plant genes, and much effort is now being devoted to improving these techniques and to adapting them to crop plants. By these means, it should prove possible to make defined changes to plants of commercial value, to improve their yield, quality and resistance to stresses, pests and diseases. This volume results from a report prepared for the Genetics and Biotechnology Division of the Commission of the European Communities by Dr Austin and his colleagues at the Plant Breeding Institute, where some of the work is being carried out. It therefore provides an authoritative account of the area for research workers and students.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the eight volume of a continuing series.
Protein engineering is the rational modification or redesign of proteins using genetic engineering. Thus, it is now possible to modify enzyme specificities, remodel antibodies, and redesign many multi-domain proteins for therapeutic purposes. While the procedures for the introduction of mutations have become routine, predicting and understanding the effects of these mutations can be complicated. This volume provides a comprehensive guide to the methods used at every stage of the engineering process, from the choice of mutation strategy, through protein stability studies, to critical evaluations of mammalian, yeast, and bacterial host expression systems. Protein Engineering: A Practical Approach is the first practical guide to this fascinating mixture of molecular biology, protein structure analysis, computation, and biochemistry. It combines a thorough theoretical foundation with detailed protocols and will be invaluable to all research workers in the area, from graduate students to senior investigators.
Updated to reflect advances in the field, this introduction provides a broad, but concise, coverage of recombinant DNA techniques. Written for advanced undergraduates, graduates and scientists who want to use this technology, emphasis is placed on the concepts underlying particular types of cloning vectors to aid understanding and to enable readers to devise suitable strategies for novel experimental situations. An introduction to the basic biochemical principles is presented first. Then PCR and cloning using E. coli hosts and plasmid, phage and hybrid vectors are described, followed by the generation and screening of libraries and how to modify, inactivate or express cloned sequences. Finally genetic manipulation in a range of other organisms is discussed, including other bacteria, fungi, algae and plants, insects and mammals. A series of 'real-life' biological problems are also presented to enable readers to assess their understanding of the material and to prepare for exams.
This is the first book portraying to a wide readership many fields of DNA in the world of materials altogether in a single volume. The book provides underlying concepts and state-of-art developments in the emerging fields of DNA electronics, structural DNA nanotechnology, DNA computing and DNA data storage, DNA machines and nanorobots. Future possibilities of innovative DNA-based technologies, such as DNA cryptography, DNA identity tags, DNA nanostructures in biosensing and nanomedicine, as well as DNA-based nanoelectronics are all covered, too. This book is valuable for university students studying engineering and technology; biotech, nanotech, and medical device R&D managers, practitioners and investors; and IP analysts who would like to extend their background in advanced DNA technologies. It is nicely illustrated, which makes it very readable, and it conveys science and principles in a lively language to appeal to a broad audience, from professionals and academics to students and lay readers. Advance Praise for DNA Beyond Genes: "Most students of DNA, and lay readers as well, are interested in the absolutely essential role it plays in biology. However, the properties which make DNA the carrier of genetic information also make it an extraordinary material that can be used as the backbone for a wide variety of nanoengineering applications - these range from information storage and computation to molecular machines and devices to artfully designed logos and symbols. The perfect self-recognition of DNA sequences makes it an ideal building block to synthesize more and more elaborate constructions and imaginative scientists have probably only just scratched the surface of what can eventually be created. Here for the first time in this wonderful book Vadim Demidov explores the full range of the non-biological applications of DNA." Charles R. Cantor Professor Emeritus of Biomedical Engineering, Boston University Member of the USA National Academy of Sciences
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the seventh volume of a continuing series. Chapter "Application of iPSC to Modelling of Respiratory Diseases" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the sixth volume of a continuing series.
This book describes the current state of international grape genomics, with a focus on the latest findings, tools and strategies employed in genome sequencing and analysis, and genetic mapping of important agronomic traits. It also discusses how these are having a direct impact on outcomes for grape breeders and the international grape research community. While V. vinifera is a model species, it is not always appreciated that its cultivation usually requires the use of other Vitis species as rootstocks. The book discusses genetic diversity within the Vitis genus, the available genetic resources for breeding, and the available genomic resources for other Vitis species. Grapes (Vitis vinifera spp. vinifera) have been a source of food and wine since their domestication from their wild progenitor (Vitis vinifera ssp. sylvestris) around 8,000 years ago, and they are now the world's most valuable horticultural crop. In addition to being economically important, V. vinifera is also a model organism for the study of perennial fruit crops for two reasons: Firstly, its ability to be transformed and micropropagated via somatic embryogenesis, and secondly its relatively small genome size of 500 Mb. The economic importance of grapes made V. vinifera an obvious early candidate for genomic sequencing, and accordingly, two draft genomes were reported in 2007. Remarkably, these were the first genomes of any fruiting crop to be sequenced and only the fourth for flowering plants. Although riddled with gaps and potentially omitting large regions of repetitive sequences, the two genomes have provided valuable insights into grape genomes. Cited in over 2,000 articles, the genome has served as a reference in more than 3,000 genome-wide transcriptional analyses. Further, recent advances in DNA sequencing and bioinformatics are enabling the assembly of reference-grade genome references for more grape genotypes revealing the exceptional extent of structural variation in the species.
This book reviews the chemical, regulatory, and physiological mechanisms of protein arginine and lysine methyltransferases, as well as nucleic acid methylations and methylating enzymes. Protein and nucleic acid methylation play key and diverse roles in cellular signalling and regulating macromolecular cell functions. Protein arginine and lysine methyltransferases are the predominant enzymes that catalyse S-adenosylmethionine (SAM)-dependent methylation of protein substrates. These enzymes catalyse a nucleophilic substitution of a methyl group to an arginine or lysine side chain nitrogen (N) atom. Cells also have additional protein methyltransferases, which target other amino acids in peptidyl side chains or N-termini and C-termini, such as glutamate, glutamine, and histidine. All these protein methyltransferases use a similar mechanism. In contrast, nucleic acids (DNA and RNA) are substrates for methylating enzymes, which employ various chemical mechanisms to methylate nucleosides at nitrogen (N), oxygen (O), and carbon (C) atoms. This book illustrates how, thanks to there ability to expand their repertoire of functions to the modified substrates, protein and nucleic acid methylation processes play a key role in cells.
The book focuses on the evolutionary impact of horizontal gene transfer processes on pathogenicity, environmental adaptation and biological speciation. Newly acquired genetic material has been considered as a driving force in evolution for prokaryotic genomes for many years, with recent technical developments advancing this field further. However, the extent and implications of gene transfer between prokaryotes and eukaryotes still raise controversies. This multi-authored volume introduces various means by which DNA can be exchanged, covers gene transfer between prokaryotes and their viruses as well as between bacteria and eukaryotes, such as fungi, plants and animals, and addresses the role of horizontal gene transfer in human diseases. Aspects discussed also include the relevance for virulence and drug resistance development on one hand, and for the occurrence of naturally derived antibiotics and other secondary metabolites on the other hand. This book offers new insights to anyone interested in genome evolution and the exchange of DNA between the different domains of life, the genetic toolkit for adaptation and the emergence of multidrug resistant bacteria.
Plant tissue culture and advanced biotechnologies have proven to be influential tools that complement conventional breeding and accelerate development of many medicinal plants. Various approaches, such as pathway engineering, precursor feeding, transformation, elicitation with biotic and abiotic elicitors and scaling up in bioreactors, have been explored to improve the production of secondary metabolites from different medicinal plants. This book provides a comprehensive description of various studies, carried out on in vitro culture and hairy root cultures of Catharanthus roseus, Silybum marianum and Digitalis species which have been considered as alternative sources for the production of anti-tumour compounds, flavonolignans and cardenolides. Specific focus is on elicitation strategy for increasing production of bioactive compounds of C. roseus L., S. marianum and Digitalis species to overcome the constrains of conventional propagation. This book is valuable for researchers or students working on medicinal plants, phytochemistry, and plant tissue culture. It also serves as a reference for the pharmaceutical industry.
This book provides in-depth insights into the regulatory frameworks of five countries and the EU concerning the regulation of genome edited plants. The country reports form the basis for a comparative analysis of the various national regulations governing genetically modified organisms (GMOs) in general and genome edited plants in particular, as well as the underlying regulatory approaches.The reports, which focus on the regulatory status quo of genome edited plants in Argentina, Australia, Canada, the EU, Japan and the USA, were written by distinguished experts following a uniform structure. On this basis, the legal frameworks are compared in order to foster a rational assessment of which approaches could be drawn upon to adjust, or to completely realign, the current EU regime for GMOs. In addition, a separate chapter identifies potential best practices for the regulation of plants derived from genome editing. |
You may like...
Genetic Testing and the Governance of…
Lara Khoury, Adelle Blackett, …
Hardcover
R2,839
Discovery Miles 28 390
Cycloadditions in Bioorthogonal…
Milan Vrabel, Thomas Carell
Hardcover
R6,072
Discovery Miles 60 720
Genetic Enhancement of Crops for…
Vijay Rani Rajpal, Deepmala Sehgal, …
Hardcover
R2,816
Discovery Miles 28 160
|