![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > Genetic engineering
This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley's importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
This book describes specific, well-know controversies in the genetic modification debate and connects them to deeper philosophical issues in philosophy of technology. It contributes to the current, far-reaching deliberations about the future of food, agriculture and society. Controversies over so-called Genetically Modified Organisms (GMOs) regularly appear in the press. The biotechnology debate has settled into a long-term philosophical dispute. The discussion goes much deeper than the initial empirical questions about whether or not GM food and crops are safe for human consumption or pose environmental harms that dominated news reports. In fact, the implications of this debate extend beyond the sphere of food and agriculture to encompass the general role of science and technology in society. The GM controversy provides an occasion to explore important issues in philosophy of technology. Researchers, teachers and students interested in agricultural biotechnology, philosophy of technology and the future of food and agriculture will find this exploration timely and thought provoking.
This volume summarizes recent technological advances in the design and engineering of Solanaceae and Cucurbitaceae crops. It begins with contributions on the tomato and melon genome sequence, databases for Solanaceae and Cucurbitaceae research, DNA markers in the breeding of the two families, and mutant resources and TILLING platforms in tomato research. Subsequent chapters address the use of molecular techniques for the modification of important breeding traits, such as tomato fruit set, growth, ripening, and sugar accumulation, as well as disease and insect resistance in melons. The volume closes with chapters on genome editing using artificial nucleases as a future breeding tool, and on the development of an in silico crop design system. It offers a valuable resource for plant breeders, molecular biologists, and agronomists.
Advances in Genetics, Volume 98 provides the latest information on the rapidly evolving field of genetics, presenting new medical breakthroughs that are occurring as a result of advances in our knowledge of the topic. The book continually publishes important reviews of the broadest interest to geneticists and their colleagues in affiliated disciplines, critically analyzing future directions. Topics of interest in this updated volume include the Genetics of Mitochondrial Disease, a Genetic analysis of depression, happiness and other normal personality traits, The Evolving Centromere and Kinetochore, and The Genetics of Parkinson's Disease.
Central to the synthesis of proteins, the performance of catalysis, and many other physiological processes, the aberrant expression of which can be linked to human diseases including cancers, RNA has proven to be key target for therapeutics as well as a tool for therapy. In RNA Therapeutics: Function, Design, and Delivery, expert contributors from a broad spectrum of scientific backgrounds highlight the roles that messenger RNAs and small RNAs can play in biology and medicine. While covering the five major RNA-based drugs, namely the use of ribozymes to cleave and/or correct mRNA transcript, the use of siRNA for targeted silencing of gene transcripts, the use of aptamers, like short RNA molecules, for neutralizing the protein functions, the use mRNA-transfected DCs to activate immune system against tumor cells, as well as the use of RNA to reprogram T and/or DC cell function, this extensive volume brings together the fields of coding (mRNA) and non-coding RNA such as ribozymes, RNAse P, siRNAs, and miRNAs into one convenient source. Written in the highly successful Methods in Molecular Biology (TM) series format, the cutting-edge protocol chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and practical tips on troubleshooting and avoiding known pitfalls. Also, the book contains several excellent reviews for teaching purposes. Authoritative and comprehensive, RNA Therapeutics: Function, Design, and Delivery provides key models and tools which will assist researchers in increasing our understanding of RNA functions, modifications, and their involvement in diseases in order to lead to the design of vital new RNA-based therapeutics.
Epigenetic Mechanisms in Cancer provides a comprehensive analysis of epigenetic signatures that govern disease development, progression and metastasis. Epigenetic signatures dictating tumor etiologies present an opportunity for biomarker identification which has broad potential for improving diagnosis, prognosis, prediction, and risk assessment. This volumes offers a unique evaluation of signature differences in childhood, sex-specific and race-specific cancers, and in doing so broadly illuminates the scope of epigenetic biomarkers in clinical environments. Chapters detail the major epigenetic process in humans consisting of DNA methylation, histone modifications and microRNAs (miRNAs) involved in the initiation, progression and metastasis of tumors. Also delineated are recent technologies such as next generation sequencing that are used to identify epigenetic profiles (primarily methylation analysis) in samples (normal, benign and cancerous) and which are highly important to the analysis of epigenetic outcomes.
This open access book focuses on the linear selection index (LSI) theory and its statistical properties. It addresses the single-stage LSI theory by assuming that economic weights are fixed and known - or fixed, but unknown - to predict the net genetic merit in the phenotypic, marker and genomic context. Further, it shows how to combine the LSI theory with the independent culling method to develop the multistage selection index theory. The final two chapters present simulation results and SAS and R codes, respectively, to estimate the parameters and make selections using some of the LSIs described. It is essential reading for plant quantitative geneticists, but is also a valuable resource for animal breeders.
Mammalian cell lines command an effective monopoly for the production of therapeutic proteins that require post-translational modifications. This unique advantage outweighs the costs associated with mammalian cell culture, which are far grater in terms of development time and manufacturing when compared to microbial culture. The development of cell lines has undergone several advances over the years, essentially to meet the requirement to cut the time and costs associated with using such a complex hosts as production platforms. This book provides a comprehensive guide to the methodology involved in the development of cell lines and the cell engineering approach that can be employed to enhance productivity, improve cell function, glycosylation and secretion and control apoptosis. It presents an overall picture of the current topics central to expression engineering including such topics as epigenetics and the use of technologies to overcome positional dependent inactivation, the use of promoter and enhancer sequences for expression of various transgenes, site directed engineering of defined chromosomal sites, and examination of the role of eukaryotic nucleus as the controller of expression of genes that are introduced for production of a desired product. It includes a review of selection methods for high producers and an application developed by a major biopharmaceutical industry to expedite the cell line development process. The potential of cell engineering approch to enhance cell lines through the manipulation of single genes that play important roles in key metabolic and regulatory pathways is also explored throughout.
A vision of the future where the latest Silicon Valley tech meets cutting-edge genetics. Decoding the World is a buddy adventure about the quest to live meaningfully in a world with such uncertainty. It starts with Po Bronson coming to IndieBio. Arvind Gupta created IndieBio as a laboratory for early biotech startups trying to solve major world problems. Glaciers melting. Dying bees. Infertility. Cancer. Ocean plastic. Pandemics. As they travel around the world, finding scientists to join their cause, the authors bring their first-hand experience to the great mysteries that haunt our future. Natural resource depletion. Job-taking robots. China's global influence. Decoding the World is the kind of book you get when you give two guys $40 million, a world full of messy big problems, a genetics laboratory to play in, and a set of Borges' collected works. After looking through their lens, you'll never see the world the same.
Most medical treatments have been designed for the "average patient." As a result of this "one-size-fits-all-approach," treatments can be very successful for some patients but not for others. This is changing with the emergence of precision medicine, an innovative approach to disease prevention and treatment that takes into account individual differences in people's genes, environments, and lifestyles. Precision medicine gives clinicians tools to better understand the complex mechanisms underlying a patient's health, disease, or condition, and to better predict which treatments will be most effective. Precision or personalized medicine in cancer treatment was once a buzzword, but it is finally becoming a reality with recent advances in imaging, genetic, and biological sciences. The importance of interpatient and intratumor variability has long been recognized, but realistic opportunities to take these into account in cancer care have emerged only recently. Innovations in patient characterization through genomics, proteomics, and metabolomics have opened new avenues to personalize cancer treatment in ways that were not possible before. Furthermore, advances in quantitative assessment of therapeutic response, as provided by functional and molecular imaging, have been critical in the implementation of precision medicine paradigm in radiation oncology. This book will be a comprehensive review of science and technology making precision medicine possible for radiation oncology, current examples and future direction.
Sustainable agriculture is a rapidly growing field aiming at producing food and energy in a sustainable way for humans and their children. Sustainable agriculture is a discipline that addresses current issues such as climate change, increasing food and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion, fertility loss, pest control, and biodiversity depletion. Novel, environmentally-friendly solutions are proposed based on integrated knowledge from sciences as diverse as agronomy, soil science, molecular biology, chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable agriculture decipher mechanisms of processes that occur from the molecular level to the farming system to the global level at time scales ranging from seconds to centuries. For that, scientists use the system approach that involves studying components and interactions of a whole system to address scientific, economic and social issues. In that respect, sustainable agriculture is not a classical, narrow science. Instead of solving problems using the classical painkiller approach that treats only negative impacts, sustainable agriculture treats problem sources. Because most actual society issues are now intertwined, global, and fast-developing, sustainable agriculture will bring solutions to build a safer world. This book series gathers review articles that analyze current agricultural issues and knowledge, then propose alternative solutions. It will therefore help all scientists, decision-makers, professors, farmers and politicians who wish to build a safe agriculture, energy and food system for future generations.
Unravelling Complexities in Genetics and Genomics: Impact on Diagnosis Counseling and Management reviews recent advances in defining genetic and genomic factors that play important roles in diseases in humans. It includes discussions on new technologies in DNA and RNA sequencing, genome analysis, and bioinformatics applied to the study of patients with specific disorders and to normal populations, and illustrates how modern molecular techniques can improve diagnoses and enable the design of specific targeted therapies and methods of prevention. Additional emphasis is placed on the genetic variants and genomic risk factors related to the development of complex common disorders, including neurobehavioral and neurocognitive disorders in children and adults and late onset disorders in adults, including atherosclerosis, type 2 diabetes, cancer, and neurodegenerative disorders.Physicians, nurses, genetic counselors, graduate students in genetics and genomics will find this book a valuable read.
With innovations in sports equipment, doping methods and human engineering on the horizon, the ethical issues raised by such technology have become noticeably acute. The problematization of technology in sport has gone largely unnoticed in historical, philosophical and policy studies of sport, but this study traces the origins, present contexts and future of sport technology. This volume speaks to a multi-disciplinary audience, developing theory of technology and sport. It provides a foundation for theorising technological issues in sport, building upon themes in cultural studies of the cyborg, otherness and gender. The book begins with an initial contextualising of sport technology, tracing the historical roots of key moments of technological development. Subsequently, chapters work towards theorising technology in sport, providing a socio-philosophical context to ways of understanding technology. From here, applied philosophical and ethical issues focus on the themes of fearing the other, virtual reality in sport, and the use of genetic technology to augment athletic performances. Perspectives draw upon a range of theory, including the works of Alasdair MacIntyre, Jacques Ellul, Don Ihde, Donna Haraway, Andrew Feenberg, Charles Taylor, Langdon Winner, Hilary Putnam, Richard Rorty, John Rawls and Michel Foucault. This book should be relevant to scholars of sport or technology from a diverse range of perspectives. Framed by the broad disciplines of history, philosophy and policy, the issues discussed can have importance for subjects as diverse as theoretical medicine, philosophy of sport and policy studies in technology. For the latter, the aim is to provide a theoretical and ethical grounding for a coherent theory of sport performance.
'A masterpiece of poignant brilliance . . . heartbreaking' Guardian Charlie Gordon, a floor sweeper born with an unusually low IQ, has been chosen as the perfect subject for an experimental surgery that doctors hope will increase his intelligence - a procedure that has been highly successful when tested on a lab mouse named Algernon. All Charlie wants is to be smart and have friends, but the treatement turns him into a genius. Then Algernon begins to fade. What will become of Charlie?
This book won the INDIEFAB 2015 Bronze Award for Science (Adult nonfiction).Genetically modified organisms (GMOs) including plants and the foods made from them, are a hot topic of debate today, but soon related technology could go much further and literally change what it means to be human. Scientists are on the verge of being able to create people who are GMOs.Should they do it? Could we become a healthier and 'better' species or might eugenics go viral leading to a real, new world of genetic dystopia? GMO Sapiens tackles such questions by taking a fresh look at the cutting-edge biotech discoveries that have made genetically modified people possible.Bioengineering, genomics, synthetic biology, and stem cells are changing sci-fi into reality before our eyes. This book will capture your imagination with its clear, approachable writing style. It will draw you into the fascinating discussion of the life-changing science of human genetic modification.
This book reviews modern strategies in the breeding of vegetables in the era of global warming. Agriculture is facing numerous challenges in the 21st century, as it has to address food, nutritional, energy and environmental security. Future vegetable varieties must be adaptive to the varying scenarios of climate change, produce higher yields of high- quality food and feed and have multiple uses. To achieve these goals, it is imperative to employ modern tools of molecular breeding, genetic engineering and genomics for 'precise' plant breeding to produce 'designed' vegetable varieties adaptive to climate change. This book is of interest to scientists working in the fields of plant genetics, genomics, breeding, biotechnology, and in the disciplines of agronomy and horticulture.
First published in 1982 . This report examines the application of classical and molecular genetic technologies to micro-organisms, plants, and animals. This book is one of the first comprehensive documents on emerging genetic technologies and their implications for society. The authors discuss the opportunities and problems involved, describe current techniques, and attempt to project some of the economic, environmental, and institutional impacts of those techniques. The issues they raise go beyond those of technology, utility, and economic feasibility. As we gain the ability to manipulate life, we must face basic questions of just what life means and how far we can reasonably-and safely-allow ourselves to go.
The book provides scope and knowledge on advanced techniques and its applications into the modern fields of biotechnology-genomics and proteomics. In this book, different genomics and proteomics technologies and principles are examined. The fundamental knowledge presented in this book opens up an entirely new way of approaching DNA chip technology, DNA array assembly, gene expression analysis, assessing changes in genomic DNA, structure-based functional genomics, protein networks, and so on. Topics in the book include: * Different gene products with a similar role in neuronal defense against oxidative * Gene-gene and gene-environment interactions in genetic epidemiology * Elucidation of proto-oncogene c-abl function with the use of mouse models and the disease model of chronic myeloid leukemia * Next-generation sequencing, microbiome evaluation, molecular microbiology, and their impact on human health * Proteomics and prostate cancer * RNA interference therapeutics * Molecular mechanisms of hepatitis C virus entry * Molecular phylogenetics for elucidation of evolutionary processes from biological data * The impact of transgenic crops on soil quality, microbial diversity, and plant-associated communities. * Biotechnological and genomic approaches for abiotic stress tolerance in crop plants The book will be valuable for biotechnology researchers and bioinformatics professionals and students in all fields of biotechnology and will serve to broaden their knowledge about these newer tools, techniques, innovations, and applications.
This book examines the making of human cloning as an imaginary practice and scientific fact. It explores the controversies surrounding both therapeutic cloning for stem cell research and reproductive cloning. The authors analyse the cultural production of cloning, how practices and representations play out in the global arena, and its transformation from science fiction to science practice. Case studies are used to illustrate key fore grounded issues:
Drawing together the Sociology of Scientific Knowledge, with insights from media and cultural studies, this book offers a timely contribution to debates about the public communication of science and the status of scientific truth. This book will be a valuable companion to students on undergraduate courses in media studies, science communication, cultural studies, science and technology studies and sociology.
With ever-advancing scientific understanding and technological capabilities, humanity stands on the brink of the potential next stage of evolution: evolution engineered by us. Nanotechnology, biotechnology, information technology and cognitive science offer the possibility to enhance human performance, lengthen life-span and reshape our inherited physical, cognitive and emotional identities. But with this promise come huge risks, complex choices and fundamental ethical questions: about evolution; about what it is to be human; and about control over, and the distribution of benefits from, new technology. Written by a range of experts in science, technology, bioethics and social science, Unnatural Selection examines the range of technological innovations offering lives that purport to be longer, stronger, smarter and happier, and asks whether their introduction is likely to lead to more fulfilled individuals and a fairer world. The breadth of approaches and perspectives make important reading for anyone who cares about the implications of humanity engineering its own evolution.
Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-Manyexcitingdiscoveriesinrecentdecadeshavecontributednewknowledgeto ourunderstandingofthemechanismsthatregulatevariousstagesofplantgrowth anddevelopment. Suchinformation,coupledwithadvancesincellandmolecular biology,isfundamentaltocropimprovementusingbiotechnologicalapproaches. Twovolumesconstitutethepresentwork. The?rst,comprising22chapters, commenceswithintroductionsrelatingtogeneregulatorymodelsforplantdev- opmentandcropimprovement,particularlytheuseofArabidopsisasamodelplant. Thesechaptersarefollowedbyspeci?ctopicsthatfocusondifferentdevelopmental aspectsassociatedwithvegetativeandreproductivephasesofthelifecycleofa plant. Six chapters discuss vegetative growth and development. Their contents considertopicssuchasshootbranching,buddormancyandgrowth,thedevel- ment of roots, nodules and tubers, and senescence. The reproductive phase of plantdevelopmentisin14chaptersthatpresenttopicssuchas?oralorganinit- tionandtheregulationof?owering,thedevelopmentofmaleandfemalegametes, pollengerminationandtubegrowth,fertilization,fruitdevelopmentandripening, seed development, dormancy, germination, and apomixis. Male sterility and self-incompatibilityarealsodiscussed. Volume2has20chapters,threeofwhichreviewrecentadvancesinsomatic embryogenesis,microsporeembryogenesisandsomaclonalvariation. Sevenofthe chapterstargetplantprocessesandtheirregulation,includingphotosynthatepartiti- ing,seedmaturationandseedstorageproteinbiosynthesis,theproductionandregu- tionoffattyacids,vitamins,alkaloidsand?owerpigments,and?owerscent. This secondbookalsocontainsfourchaptersonhormonalandenvironmentalsignaling (aminocompounds-containinglipids,auxin,cytokinin,andlight)intheregulationof plantdevelopment;othertopicsencompassthemoleculargeneticsofdevelopmental regulation,includingRNAsilencing,DNAmethylation,epigenetics,activationt- ging,homologousrecombination,andtheengineeringofsyntheticpromoters. Thesebookswillserveaskeyreferencesforadvancedstudentsandresearchers involved in a range of plant-orientated disciplines, including genetics, cell and molecularbiology,functionalgenomics,andbiotechnology. August2009 E-C. PuaandM. R. Davey v Contents PartI CellDifferentiationandDevelopmentInVitro 1 DevelopmentalBiologyofSomaticEmbryogenesis ...3 R. J. Rose,F. R. Mantiri,S. Kurdyukov,S-K. Chen,X-D. Wang, K. E. Nolan,andM. B. Sheahan 1. 1 Introduction ...3 1. 2 BasicRequirementsforInVitroSE ...4 1. 3 ExplantandStemCellBiology ...5 1. 3. 1 Genotype ...5 1. 3. 2 ExplantCells ...6 1. 4 EarliestEventinEmbryogenesis-AsymmetricCellDivision ...8 1. 4. 1 CellWallinEstablishmentofPolarity,DivisionAsymmetry andCellFate ...8 1. 4. 2 DivisionAsymmetryintheInitiationofSE ...10 1. 4. 3 AsymmetricDivisionandtheSuspensorinSE ...10 1. 5 StressComponentintheInitiationofSE ...11 1. 5. 1 ReactiveOxygenSpecies ...11 1. 5. 2 Stress-RelatedHormoneSignalling ...12 1. 6 HormonesandtheInitiationofSE ...13 1. 7 InductionofSEbyOver-ExpressionofLeafyCotyledon TranscriptionFactorsandTheirRelationshiptoSEInductionand Repression-theGAConnection ...14 1. 8 ABA,StressandGA ...16 1. 9 SolubleSignalsandCell-CellInteractionsthatPromoteSEin SuspensionCultures ...16 1. 9. 1 SecretedProteinsthatIn?uenceSE ...16 1. 9. 2 AGPSignallinginSE:MechanismsandInteractionsBetween SignallingPathways ...17 1. 9. 3 Cell-CellInteractionandRelevancetoSEinSuspension Cultures ...18 vii viii Contents 1. 10 DevelopmentProgramAfterSEInduction ...19 1. 11 ConcludingRemarksandaModelBasedonStudiesin Medicagotruncatula ...19 1. 12 SEandBiotechnology ...20 References ...21 2 MicrosporeEmbryogenesis ...27 A. Olmedilla 2. 1 Introduction ...27 2. 2 DiscoveryoftheProductionofHaploidsbyAntherCulture ...29 2. 3 StrategiesfortheInductionofMicrosporeEmbryogenesis ...29 2. 4 In?uenceofDifferentFactorsinMicrosporeEmbryogenesis ...30 2. 4. 1 Genotype ...30 2. 4. 2 DonorPlantPhysiology ...31 2. 4. 3 StageofPollenDevelopment ...
The latest edition of this highly successful textbook introduces
the key techniques and concepts involved in cloning genes and in
studying their expression and variation. Noted for its outstanding balance between clarity of coverage
and level of detail, this book provides an excellent introduction
to the fast moving world of molecular genetics. |
You may like...
Genomics and Biotechnological Advances…
Yash Pal Singh Malik, Debmalya Barh, …
Paperback
Synthetic Biology - New…
Madan L. Nagpal, Oana-Maria Boldura, …
Hardcover
R3,087
Discovery Miles 30 870
DNA and Biotechnology
Molly Fitzgerald-Hayes, Frieda Reichsman
Hardcover
R1,913
Discovery Miles 19 130
Therapeutic Antibody Engineering…
William R. Strohl, Lila M. Strohl
Hardcover
|